
Algorithms for GIS:

Space filling curves

Z-order

visit quadrants recursively in this order: NW, NE, SW, SE

Z-order

visit quadrants recursively in this order: NW, NE, SW, SE

Z-order

visit quadrants recursively in this order: NW, NE, SW, SE

Z-order

visit quadrants recursively in this order: NW, NE, SW, SE

Z-order

visit quadrants recursively in this order: NW, NE, SW, SE

• At the limit, it will reach all points in the square ==> space filling curve

Z-order

visit quadrants recursively in this order: NW, NE, SW, SE

• At the limit, it will reach all points in the square ==> space filling curve

Where is the very first
point visited?

Z-order

visit quadrants recursively in this order: NW, NE, SW, SE

first point in this order

last point in this order

• At the limit, it will reach all points in the square ==> space filling curve

Z-order

visit quadrants recursively in this order: NW, NE, SW, SE

first point in this order

last point in this order

• At the limit, it will reach all points in the square ==> space filling curve

Z-order

visit quadrants recursively in this order: NW, NE, SW, SE

first point in this order

last point in this order

• At the limit, it will reach all points in the square ==> space filling curve
• Every point in the square will be visited by this curve
• 2D ==> 1D

Z-order

visit quadrants recursively in this order: NW, NE, SW, SE

first point in this order

last point in this order

• At the limit, it will reach all points in the square ==> space filling curve
• Every point in the square will be visited by this curve
• 2D ==> 1D

Z-index(p)

Z-order

visit quadrants recursively in this order: NW, NE, SW, SE

first point in this order

last point in this order

• We visit quadrant 1 before we visit quadrant 2:

==> All points in quadrant 1 comes before all points in quadrant 2

Z-order

visit quadrants recursively in this order: NW, NE, SW, SE

first point in this order

last point in this order

• We visit quadrant 1 before we visit quadrant 2:

==> All points in quadrant 1 comes before all points in quadrant 2

Z-order

visit quadrants recursively in this order: NW, NE, SW, SE

first point in this order

last point in this order

• We visit quadrant 1 before we visit quadrant 2:

==> All points in quadrant 1 comes before all points in quadrant 2

Z-order

visit quadrants recursively in this order: NW, NE, SW, SE

first point in this order

last point in this order

• We visit quadrant 1 before we visit quadrant 2:

==> All points in quadrant 1 comes before all points in quadrant 2

Z-order

visit quadrants recursively in this order: NW, NE, SW, SE

first point in this order

last point in this order

• We visit quadrant 1 before we visit quadrant 2:

==> All points in quadrant 1 comes before all points in quadrant 2

Z-order

visit quadrants recursively in this order: NW, NE, SW, SE

first point in this order

last point in this order

• and so on…..

Z-order

visit quadrants recursively in this order: NW, NE, SW, SE

first point in this order

last point in this order

• and so on…..

Z-order

visit quadrants recursively in this order: NW, NE, SW, SE

first point in this order

last point in this order

• Every canonical square corresponds to an interval of the z-order curve

Z-order

visit quadrants recursively in this order: NW, NE, SW, SE

first point in this order

last point in this order

• Two canonical squares are non-intersecting, or one included in the other

Z-order

visit quadrants recursively in this order: NW, NE, SW, SE

• Any two points can be compared: compare their Z-indices

a

b

Z-index(a) Z-index(b)

Z-order

visit quadrants recursively in this order: NW, NE, SW, SE

• Any two points can be compared: compare their Z-indices
• If point a comes before point b on the Z-order curve, it’s said that a < b

a

b

Z-index(a) Z-index(b)

Computing the Z-index

Z_index : R2 —> R
For simplicity assume points with integer coordinates on k bits

• What is the largest integer representable on k bits?

Z-index(p)

Computing the Z-index

Z-index(p)

For simplicity assume points with integer coordinates on k bits

p = (x1x2x3…xk, y1y2y3…yk)
Z_index : {0,..,2k-1} x {0,..,2k-1}—> {0,..,22k-1}

Z_index(p) = x1y1x2y2…xkyk

What is the largest value

representable on 2k bits?

Computing the Z-index

k=1 bit

x

y

(0,0)

(0,1)

(1,0)

(1,1)

p Z_index(p)

(0,0) 0

(0,1) 1

(1,0) 2

(1,1) 3

For simplicity assume points with integer coordinates on k bits

p = (x1x2x3…xk, y1y2y3…yk)
Z_index : {0,..,2k-1} x {0,..,2k-1}—> {0,..,22k-1}

Z_index(p) = x1y1x2y2…xkyk

Computing the Z-index

k=1 bit
y

x0

1

2

3

p Z_index(p)

(0,0) 0

(0,1) 1

(1,0) 2

(1,1) 3

For simplicity assume points with integer coordinates on k bits

p = (x1x2x3…xk, y1y2y3…yk)
Z_index : {0,..,2k-1} x {0,..,2k-1}—> {0,..,22k-1}

Z_index(p) = x1y1x2y2…xkyk

Computing the Z-index

k=1 bit
y

x0 2

1 3

p Z_index(p)

(0,0) 0

(0,1) 1

(1,0) 2

(1,1) 3

For simplicity assume points with integer coordinates on k bits

p = (x1x2x3…xk, y1y2y3…yk)
Z_index : {0,..,2k-1} x {0,..,2k-1}—> {0,..,22k-1}

Z_index(p) = x1y1x2y2…xkyk

Computing the Z-index

k=2 bits

x

y

p Z_index(p)

(00,00) 0000=0
(00,01) 0001=1
(00,10) 0100=4
(00,11) 0101=5
(01,00)
(01,01)
(01,10)
(01,11)
(10,00)
(10,01)
(10,10)
(10,11)
(11,00)
(11,01)
(11,10)
(11,11)Find the Z-order!

For simplicity assume points with integer coordinates on k bits

p = (x1x2x3…xk, y1y2y3…yk)
Z_index : {0,..,2k-1} x {0,..,2k-1}—> {0,..,22k-1}

Z_index(p) = x1y1x2y2…xkyk

Computing the Z-index

k=2 bits

x

y

p Z_index(p)

(00,00) 0000=0
(00,01) 0001=1
(00,10) 0100=4
(00,11) 0101=5
(01,00)
(01,01)
(01,10)
(01,11)
(10,00)
(10,01)
(10,10)
(10,11)
(11,00)
(11,01)
(11,10)
(11,11)

For simplicity assume points with integer coordinates on k bits

p = (x1x2x3…xk, y1y2y3…yk)
Z_index : {0,..,2k-1} x {0,..,2k-1}—> {0,..,22k-1}

Z_index(p) = x1y1x2y2…xkyk

Computing the Z-index

k=3 bits

Find the Z-order!

x

y

For simplicity assume points with integer coordinates on k bits

p = (x1x2x3…xk, y1y2y3…yk)
Z_index : {0,..,2k-1} x {0,..,2k-1}—> {0,..,22k-1}

Z_index(p) = x1y1x2y2…xkyk

Computing the Z-index

x

y

• Consider an x-coordinate x1x2x3 in the square [0,…8)
• x1=0 means the point will reside in the first half
• x1=1 means the point will reside in the second half

x=0** x=1**

Computing the Z-index

x

y

• Consider an y-coordinate y1y2y3 in the square [0,…8)
• y1=0 means the point will reside in the first half
• y1=1 means the point will reside in the second half

y=0**

y=1**

Computing the Z-index

x

y

• Consider an y-coordinate y1y2y3 in the square [0,…8)
• y1=0 means the point will reside in the first half
• y1=1 means the point will reside in the second half

x=0**
y=0**

x=0**
y=1**

x=1**
y=1**

x=1**
y=0**

Computing the Z-index

• Consider an y-coordinate y1y2y3 in the square [0,…8)
• y1=0 means the point will reside in the first half
• y1=1 means the point will reside in the second half

x

y

x=0**
y=0**

x=0**
y=1**

x=1**
y=1**

x=1**
y=0**

x

y

Z=00**

Z=01**

Z=10**

Z=11**

Computing the Z-index

• Consider an y-coordinate y1y2y3 in the square [0,…8)
• y1=0 means the point will reside in the first half
• y1=1 means the point will reside in the second half

x

y

x

y

Z=00**

Z=01**

Z=10**

Z=11**

Computing the Z-index

• Consider an y-coordinate y1y2y3 in the square [0,…8)
• y1=0 means the point will reside in the first half
• y1=1 means the point will reside in the second half

x

y

x

y

Z=00**

Z=01**

Z=10**

Z=11**

Computing the Z-index

• Consider an y-coordinate y1y2y3 in the square [0,…8)
• y1=0 means the point will reside in the first half
• y1=1 means the point will reside in the second half

x

y

x

y

Z=00**

Z=01**

Z=10**

Z=11**

Computing the Z-index

• Consider an y-coordinate y1y2y3 in the square [0,…8)
• y1=0 means the point will reside in the first half
• y1=1 means the point will reside in the second half

x

y

x

y

Z=00**

Z=01**

Z=10**

Z=11**

Computing the Z-index

• Consider an y-coordinate y1y2y3 in the square [0,…8)
• y1=0 means the point will reside in the first half
• y1=1 means the point will reside in the second half

x

y

x

y

Z=00**

Z=01**

Z=10**

Z=11**

Z-order

• other Z-orders can be obtained similarly

y

x

y

• Can be extended to work with decimal numbers in [0,1)
• make values positive (add smallest value)
• divide all values by max value
• ==> now we got values in [0,1)p=(.1100, .0101)

Peano curve

Space-filling curves

• Z-order curves are a special type of space-filling curves
• First SFC were described by Peano and Hilbert

Hilbert curve

Spatial locality

Spatial applications usually have spatial locality in their access to data, i.e. they
are likely to access together points that are close to each other in space

Spatial locality

Spatial applications usually have spatial locality in their access to data, i.e. they
are likely to access together points that are close to each other in space

Spatial locality

Spatial applications usually have spatial locality in their access to data, i.e. they
are likely to access together points that are close to each other in space

Spatial locality

Spatial applications usually have spatial locality in their access to data, i.e. they
are likely to access together points that are close to each other in space

Spatial locality

Spatial applications usually have spatial locality in their access to data, i.e. they
are likely to access together points that are close to each other in space

Spatial locality

Spatial applications usually have spatial locality in their access to data, i.e. they
are likely to access together points that are close to each other in space

We would like points “close” in 2D to be stored “close” to each other in the data structure

grid in default row-major order

…

Spatial locality

grid in default row-major order

…

Spatial locality

grid in default row-major order

…

Spatial locality

Does this layout have good spatial locality?

• points (r,c) (r, c+/-1): how far are they in the array?

• points (r,c), (r+1,c): how far are they in the array?

grid in default row-major order

…

Spatial locality

Does this layout have good spatial locality?

• points (r,c) (r, c+/-1): how far are they in the array?

• points (r,c), (r+1,c): how far are they in the array?

grid in default row-major order

…

Spatial locality

Does this layout have good spatial locality?

• points (r,c) (r, c+/-1): how far are they in the array?

• points (r,c), (r+1,c): how far are they in the array?

grid in default row-major order

…
grid stored in Z-order

…

Spatial locality

grid in default row-major order

…
grid stored in Z-order

…

Spatial locality

grid in default row-major order

…
grid stored in Z-order

…

Spatial locality

grid in default row-major order

…
grid stored in Z-order

…

Spatial locality

grid in default row-major order

…
grid stored in Z-order

…

Spatial locality

grid in default row-major order

…
grid stored in Z-order

…

Spatial locality

grid in default row-major order

…
grid stored in Z-order

…

Spatial locality

grid in default row-major order

…
grid stored in Z-order

…

Spatial locality

grid in default row-major order

…
grid stored in Z-order

…

Spatial locality

Arranging data in order of a space-filling curve improves spatial locality
• points that are close together in space, will be stored close to each other

Spatial locality

• Big-Oh analysis does not have the final word
• Two algorithms that have the same big-Oh can differ a lot in performance

depending on their cache efficiency
• To analyze and fine tune the algorithm we need to look at the performance

across all levels of the memory hierarchy

http://classconnection.s3.amazonaws.com/149/flashcards/3088149/png/memory_hierarchy1367201501848.png

http://classconnection.s3.amazonaws.com/149/flashcards/3088149/png/memory_hierarchy1367201501848.png

http://users.informatik.uni-halle.de/~jopsi/dinf104/memory_hierarchy.gif

http://users.informatik.uni-halle.de/~jopsi/dinf104/memory_hierarchy.gif

• At all levels, data is organized and moved in blocks/pages
• Each level acts as a “cache” for the next level: stores most recently used

blocks
• Applications that access data that’s stored in a “recent” block will find it in

cache
• 1ns vs 100ns <—- SIGNIFICANT!

Spatial locality

• Arranging data in order of a space-filling curve improves spatial locality
• points that are close together in space, will be stored close to each

other
=> data will be in the same blocks as previous data
==> data will be found in cache

 ==> improvements at all levels of the memory hierarchy

• Hilbert curve has better locality than z-order, but slower to compute
• Z-order used with Strassen’s algorithm —> speedups (2002)

SFC in art

Don Relyea, artist futurist and tehnologist
• http://www.donrelyea.com/site2015/space-filling-curve-art-2004-2014-wide-format/

http://www.donrelyea.com/site2015/space-filling-curve-art-2004-2014-wide-format/

