Algorithms for GIS;:

Space filling curves

/-order

visit quadrants recursively in this order: NW, NE, SW, SE

/
L,

/-order

visit quadrants recursively in this order: NW, NE, SW, SE

s
s

ANRRAN

/-order

visit quadrants recursively in this order: NW, NE, SW, SE

7 NS T
2z
2727

—
7/_1‘

\

N

/-order

visit quadrants recursively in this order: NW, NE, SW, SE

7/ 7
/L | /L /L
7/ 7/ 7/
Z |z
7

N\

N\

AR

N

N\ \m: o WY AN
~ gﬁm:\ NS
\J \ ‘ \J \
NN R
MR ANN

AN R
NNIRR RN R
\\‘\\
IR

/-order

visit quadrants recursively in this order: NW, NE, SW, SE

N

\\m\m
~‘§§ﬁ::\~‘
N G : :
NN RN RIR

AN R

AN N

N

N

\
\L
N QY SIS \32
NNNNR
~ \NR\\
NOAR AR

N

N

N

At the limit, it will reach all points in the square ==> space filling curve

/-order

visit quadrants recursively in this order: NW, NE, SW, SE

-

/L L /L

N

Where is the very first
point visited?

N
N

\L

N QY SIS \32
NNNNR

~ \NR N N
NOAR AR

AN N
N\

YANAN AN AN

\ iﬁ&::\ AN R
AN TS A .
WMNNA

AN R

N
N

e At the limit, it will reach all points in the square ==> space filling curve

/-order .

visit quadrants recursively in this order: NW, NE, SW, SE

~ 7 22

N

first point in this order

N

N
N

N\

AR
N QY SIS \32
NMNNR
‘:v\gg
NORRA

AN N
N\

N
N

\\m\x
‘iiﬁ: ;
TR ,
NN NN

AN R

°
“~last point in this order

e At the limit, it will reach all points in the square ==> space filling curve

/-order

visit quadrants recursively in this order: NW, NE, SW, SE

/

first point in this order/ _// L

AN NN

'\Iast point in this order

e At the limit, it will reach all points in the square ==> space filling curve

/-order .

visit quadrants recursively in this order: NW, NE, SW, SE

[7 "l Va
first point in this order/ : Z : Z
A A
77 7/ 7| Z/ 2/
/4 275
772 12/ 2 I 7 L
A /7 /L "l /L /L
77 77 77 77
22 /7 /7
77 7 Z/ V
/Z /2 LL LL

L J
—last point in this order

e At the limit, it will reach all points in the square ==> space filling curve
 Every point in the square will be visited by this curve
e 2D ==>1D

/-order .

visit quadrants recursively in this order: NW, NE, SW, SE

.

first point in this order

) £ /) '
/ last point in this order
o

Z-index(p)

e At the limit, it will reach all points in the square ==> space filling curve
 Every point in the square will be visited by this curve
e 2D ==>1D

/-order .

visit quadrants recursively in this order: NW, NE, SW, SE

[7 "l Vi
first point in this order/ : Z : Z
Z1ZF ZA:
77 7/ 7| Z/ 2/
4/ A
77 [(7 (7
;4 /7 /L "l /L /L
77 77 77 77
22 /7 /75
77 7 2/ Vi
/Z /2 LL LL

L J
—last point in this order

We visit quadrant 1 before we visit quadrant 2:

==> All points in quadrant 1 comes before all points in quadrant 2

/-order .

visit quadrants recursively in this order: NW, NE, SW, SE

'

'J '/
first point in this order/ | [
/75
7/ 2/
7
-7 (7 L/ L/
A
77 77 77 77
1 74/ /2
77 7 2/ a
/Z /2 LL LL

@
—last point in this order

We visit quadrant 1 before we visit quadrant 2:

==> All points in quadrant 1 comes before all points in quadrant 2

/-order .

visit quadrants recursively in this order: NW, NE, SW, SE

.

first point in this order

—last point in this order

We visit quadrant 1 before we visit quadrant 2:

==> All points in quadrant 1 comes before all points in quadrant 2

/-order .

visit quadrants recursively in this order: NW, NE, SW, SE

7 'J Vi
first point in this order/ : Z : Z
Z ZA:
77 7/ 7| Z/ 2/
= b7
y L/
7 /L /L
2/ 2/
247
77 [7
/L

\ 7
—last point in this order
r /\. N

We visit quadrant 1 before we visit quadrant 2:

==> All points in quadrant 1 comes before all points in quadrant 2

/-order .

visit quadrants recursively in this order: NW, NE, SW, SE
ANALIZE

;4 7
ZE ,',V,
'\ | o

—last point in this order

.“ ,./\'\‘ -

We visit quadrant 1 before we visit quadrant 2:

first point in this order

)

N\

2/
7]
v (/
/L

2/

\\m
TR

THIHRN

==> All points in quadrant 1 comes before all points in quadrant 2

/-order .

visit quadrants recursively in this order: NW, NE, SW, SE

first point in this order/ ‘ Z
H |
7/ 2/ A
% L
A k7 ;z’,_éi Z
2/ 2/ 7/ 2/
7} Z /) K
7/ 7 /S
/Z (1 /Z /Z
: gf

—last point in this order

e andsoon.....

/-order .

visit quadrants recursively in this order: NW, NE, SW, SE

.

first point in this order

/|
4 /)
®
\

/ last point in this order
P e ©
o __—@

e andsoon.....

/-order .

visit quadrants recursively in this order: NW, NE, SW, SE

Nz Z 2
first point in this order : Z | 2/54

22 Z

77 7/ 7 2/
A722/77

/7 ,;If’ Z

77 77 7 77

77 : [7 5 /S L K
7. 7). 7. 7.
BT

—last point in this order

e Every canonical square corresponds to an interval of the z-order curve

/-order .

visit quadrants recursively in this order: NW, NE, SW, SE

Nz Z 2
first point in this order : Z | 2/54

22 Z

77 7/ 7 2/
A722/77

/7 ,;If’ Z

77 77 7 77

77 : [7 5 /S L K
7. 7). 7. 7.
BT

—last point in this order

 [wo canonical squares are non-intersecting, or one included in the other

/-order

visit quadrants recursively in this order: NW, NE, SW, SE

ff}?’

AT A
721 ;ﬂ?

Z-indéx(a) Z-index(b)

 Any two points can be compared: compare their Z-indices

/-order .

visit quadrants recursively in this order: NW, NE, SW, SE

 Any two points can be compared: compare their Z-indices

e |f point a comes before point b on the Z-order curve, it's said that a < b

Computing the Z-index

Z_index : R —> R
For simplicity assume points with integer coordinates on k bits

« What is the largest integer representable on Kk bits?

Computing the Z-index

For simplicity assume points with integer coordinates on k bits

P = (X1X2X3... Xk, Y1Y2Y3---Yk)

Z index : {0,..,2%1} x {0,..,2%1}—> {0,..,2%-1)
Z_index(p) = X1y1XaYa.. XkYk

N

What is the largest value

representable on 2k bits?

-Index

\Z/()\/

P

Computing the Z-index

For simplicity assume points with integer coordinates on k bits

P = (X1X2X3.. . Xk, Y1Y2Y3...Yk)
Z index : {0,..,2%1} x {0,..,2%1}—> {0,..,2%-1)

Z_index(p) = X1y1XaYa. XkYk

k=1 bit
Y4
(0y1) (1,1)
O @
o O :X

(0,0) (1,0)

p
(0,0) 0
o1 | ;o
a0 | 2
oA | 3

Computing the Z-index

For simplicity assume points with integer coordinates on k bits

P = (X1X2X3.. . Xk, Y1Y2Y3...Yk)
Z index : {0,..,2%1} x {0,..,2%1}—> {0,..,2%-1)

Z_index(p) = X1y1XaYa. XkYk

k=1 bit
Y4
C) o3
Ly @ >
0 2 X

p
(0,0) 0
o1 | ;o
a0 | 2
oA | 3

Computing the Z-index

For simplicity assume points with integer coordinates on k bits

P = (X1X2X3.. . Xk, Y1Y2Y3...Yk)
Z index : {0,..,2%1} x {0,..,2%1}—> {0,..,2%-1)

Z_index(p) = X1y1XaYa. XkYk

K=1 bit

p
(0,0) 0
o1 | ;o
a0 | 2
oA | 3

Computing the Z-index

For simplicity assume points with integer coordinates on k bits

D = (X1XoX3... Xk, Y1Y2Y3...Yk)

Z index : {0,..,2%1} x {0,..,2%1}—> {0,..,2%-1)
Z_index(p) = X1y1XaY2.. XYk

Z_index(p)

k=2 DIts
g
O O)
- O O -
O O - O
(U3 ' @ ’-—»X

Find the Z-order!

Computing the Z-index

For simplicity assume points with integer coordinates on k bits

P = (X1X2X3.. . Xk, Y1Y2Y3...Yk)
Z index : {0,..,2%1} x {0,..,2%1}—> {0,..,2%-1)

Z_index(p) = X1y1XaYa. XkYk

Z_index(p)

k=2 bits

Computing the Z-index

For simplicity assume points with integer coordinates on k bits

P = (X1X2X3... Xk, Y1Y2Y3---Yk)

Z index : {0,..,2%1} x {0,..,2%1}—> {0,..,2%-1)
Z_index(p) = X1y1XaYa.. XkYk

k=3 bits

=

Find the Z-order!

Computing the Z-index

e Consider an x-coordinate xixoxzin the square [0,...8)
* x1=0 means the point will reside in the first half

* x1=1 means the point will reside in the second halt

5
?

X=1""

>I<
O
>(_
>(_

Computing the Z-index

Consider an y-coordinate y1y2ysin the square [0,...8)
* y1=0 means the point will reside in the first half

* yi=1 means the point will reside in the second halt

<

y=1**

yzo**

Computing the Z-index

* Consider an y-coordinate yiy2ysin the square [0O,...8)
* y1=0 means the point will reside in the first half

* yi=1 means the point will reside in the second halt

']
X=O** X:1**
y=1 o y:1 xx
x=0"" x=1""
yzo** yzo**

Computing the Z-index

* Consider an y-coordinate yiyzysin the square [0O,...8)
* y1=0 means the point will reside in the first half

* yi=1 means the point will reside in the second halt

d d
x=0"" x=1"" 7=07= | Z=91
y=1 y=1**
x=0"" x=1""
y:o** y:o**
/=00"" /=10""
X

Computing the Z-index

Consider an y-coordinate y1y2ysin the square [0,...8)
* y1=0 means the point will reside in the first half

* yi=1 means the point will reside in the second halt

<
—
<

Z=01" | Z=11"

Z:OO** Z=10**

Computing the Z-index

* Consider an y-coordinate yiy2ysin the square [0O,...8)
* y1=0 means the point will reside in the first half

* yi=1 means the point will reside in the second halt

Z=01" | Z=11"

ZZOO** Z=10**

Computing the Z-index

Consider an y-coordinate y1y2ysin the square [0,...8)
* y1=0 means the point will reside in the first half

* yi=1 means the point will reside in the second halt

/=01*" Z=11"%

Z=00" | Z=10"

Computing the Z-index

* Consider an y-coordinate yiy2ysin the square [0O,...8)
* y1=0 means the point will reside in the first half

* yi=1 means the point will reside in the second halt

/=01*" Z=11"%

Z=00" | Z=10"

Computing the Z-index

* Consider an y-coordinate yiy2ysin the square [0O,...8)
* y1=0 means the point will reside in the first half

* yi=1 means the point will reside in the second halt

/=01*" Z=11"%

Z=00" | Z=10"

/-order

e other Z-orders can be obtained similarly

y“ Z
N > Xv

* Can be extended to work with decimal numbers in [0,1)

* make values positive (add smallest value)
e divide all values by max value

« ==> now we got values in [0,1)p=(.1100, .0101)

Space-filling curves

e /-order curves are a special type of space-filling curves

* First SFC were described by Peano and Hilbert

)
|

SRS R52525

]
]

[
252525250

|] |] [] | J 1
! 1 !]I o]
. 11 .

10

10

][

[
[
[

Peano curve

Hilbert curve

-
-

L

[

1

S I —
—

L

:] 1 [

==

Spatial locality

Spatial applications usually have spatial locality in their access to data, i.e. they
are likely to access together points that are close to each other in space

Spatial locality

Spatial applications usually have spatial locality in their access to data, i.e. they
are likely to access together points that are close to each other in space

Spatial locality

Spatial applications usually have spatial locality in their access to data, i.e. they
are likely to access together points that are close to each other in space

Spatial locality

Spatial applications usually have spatial locality in their access to data, i.e. they
are likely to access together points that are close to each other in space

Spatial locality

Spatial applications usually have spatial locality in their access to data, i.e. they
are likely to access together points that are close to each other in space

Spatial locality

Spatial applications usually have spatial locality in their access to data, i.e. they
are likely to access together points that are close to each other in space

We would like points “close” in 2D to be stored “close” to each other in the data structure

Spatial locality

:0000

@.ﬁ

grid in default row-major order

o0 00000

Spatial locality

(0o o o o o o o)
./‘y/‘

ass==re

.4.4:

grid in default row-major order

(m—m)

Spatial locality

(‘ e O o ../.7.>
M@o
V‘y/*

@.ﬁ

grid in default row-major order

Co—c—o—o—o—o—L)

Does this layout have good spatial locality?
* points (r,c) (r, c+/-1): how far are they in the array?

e points (r,c), (r+1,c): how far are they in the array?

Spatial locality

(&.L. Q%)

L T
-

@4

grid in default row-major order

(m—o—o—w)

Does this layout have good spatial locality?
* points (r,c) (r, c+/-1): how far are they in the array?

e points (r,c), (r+1,c): how far are they in the array?

Spatial locality

(&.L. Q%‘)

oo oo

.44_._./:.—./‘

grid in default row-major order

(m—o—o—o—L)

Does this layout have good spatial locality?
* points (r,c) (r, c+/-1): how far are they in the array?

e points (r,c), (r+1,c): how far are they in the array?

Spatial locality

ass==re

.44:

grid in default row-major order

oo 000090

grid stored in Z-order

Spatial locality

(o o o o o o o)
S e

ass==re

. o o o o V

grid stored in Z-order

grid in default row-major order

CETTTTEE —— P

Spatial locality

(o o o o o o o)
S e

ass==re N

.44:

grid in default row-major order

grid stored in Z-order

CET T T w—— (e0eoose

Spatial locality

(o o o o o o o)

ass==re

. o o o o V

grid stored in Z-order

grid in default row-major order

Spatial locality

(o o o o o o o)
S e

J V

grid stored in Z-order

grid in default row-major order

)
v

Spatial locality

e o o o o o
oo oo
e o o o

./.m'/‘

grid in default row-major order grid stored in Z-order

Spatial locality

N

)

grid stored in Z-order

oo oo i::

grid in default row-major order

oo o000 S 4 o o0 on o o

Spatial locality

e o o o o o
oo oo
e o o o

./.m'/‘

grid in default row-major order grid stored in Z-order

Spatial locality

Arranging data in order of a space-filling curve improves spatial locality

* points that are close together in space, will be stored close to each other

grid in default row-major order grid stored in Z-order

Spatial locality

e Big-Oh analysis does not have the final word

 Two algorithms that have the same big-Oh can differ a lot in performance
depending on their cache efficiency

e TJo analyze and fine tune the algorithm we need to look at the performance
across all levels of the memory hierarchy

An Example Memory Hierarchy

CPU registers hold words retrieved
from L1 cache

LO:
egisters

L1: L1 cache

L1 cache holds cache lines retrieved

Smaller, (SRAM) from L2 cache
faster,
; L2:
costlier L2 cache |
per byte (SRAM) L2 cache holds cache lines
retrieved from main memory
L3:

Larger, Main memory Main memory holds disk blo

slower, (DRAM) retrieved from local disks

cheaper

per byte Local secondary storage Local disks hold files

(local disks) retrieved from disks on
emote network servers
L5 Remote secondary storage

(tapes, distributed file systems, Web servers)

http://cl nnection.s3.amazonaws.com/149/flashcar 149/png/memory_hierarchy1367201501848.pn

http://classconnection.s3.amazonaws.com/149/flashcards/3088149/png/memory_hierarchy1367201501848.png

MEMORY HIERARCHY

HARD
RAM
-.Q.El-'!- MEMORY DISK

CACHE 1| |UACHE?Z

10’ 10° 10”

Indicated are approximate numbers of clock cycles to
access the various elements of the memory hierarchy

http://users.informatik.uni-halle.de/~jopsi/dinf104/memory_hierarchy.gif

/O bus /
o Memory I/O devices
Registers
Disk
memory
Register Cache Memory reference
reference reference reference
Size: 500 bytes 64 KB 512 MB 100 GB
Speed: 0.25ns 1ns 100 ns 5ms

© 2003 Elsevier Science (USA). All rights reserved.

C Memory Ob K
a us
i c oue Memory I/O devices
Registers h
e .
Disk
memory
Register Cache Memory reference
reference reference reference
Size: 500 bytes 64 KB 512 MB 100 GB
Speed: 0.25ns 1ns 100 ns 5ms

© 2003 Elsevier Science (USA). All rights reserved.

At all levels, data is organized and moved in blocks/pages

Each level acts as a “cache” for the next level: stores most recently used
blocks

Applications that access data that’s stored in a “recent” block will find it in
cache

e 1nsvs 100ns <—- SIGNIFICANT!

Spatial locality

* Arranging data in order of a space-filling curve improves spatial locality

e points that are close together in space, will be stored close to each
other

=> data will be in the same blocks as previous data
==> data will be found in cache

==> improvements at all levels of the memory hierarchy

e Hilbert curve has better locality than z-order, but slower to compute

o /-order used with Strassen’s algorithm —> speedups (2002)

SFC in art

Don Relyea, artist futurist and tehnologist

http://www.donrelyea.com/site2015/space-filling-curve-art-2004-2014-wide-format/

http://www.donrelyea.com/site2015/space-filling-curve-art-2004-2014-wide-format/

