Algorithms for GIS:

Space filling curves

Z-order

visit quadrants recursively in this order: NW, NE, SW, SE

Z-order

visit quadrants recursively in this order: NW, NE, SW, SE

Z-order

visit quadrants recursively in this order: NW, NE, SW, SE

Z－order

visit quadrants recursively in this order：NW，NE，SW，SE

$2 \boxed{Z 2} 2$	
V3 $23 / \sqrt{3}$	23 23
	V
Vレレ	V2
	込
L2	込
	吸兂
	V
	V $2 \square$
प6， $2 \sqrt{3}$	TRマR TR

Z－order

visit quadrants recursively in this order：NW，NE，SW，SE

	$2 \pi \sqrt{2} 2$
	VZZ
पZQZ $2 \square \square \square$	二及，
\乙 $2 \square$	$2 \sqrt{2}$ 亿
URLZ Un	पद ZR UR Z
\ূ	
$\triangle \angle \mathbb{Z}$	
，	
UR प马 UR Z	
	\n $\triangle \sqrt{2} \sqrt{2}$
2	TマR
	$v \sqrt{n z} \sqrt{n z}$
UZ	TRQZ पZ口乙
ที乙	\®

－At the limit，it will reach all points in the square＝＝＞space filling curve

Z-order

visit quadrants recursively in this order: NW, NE, SW, SE

Where is the very first point visited?

$2322 \pi 22 \pi$	$23282 \pi 23$
212R	
	$\frac{\square Z}{V Z} \frac{\square}{\Sigma Z}$
VR2R3R~	
$\leqslant \square \leqslant z \leqslant \square \leqslant \square$	$\Sigma \square \leqslant z \leqslant \square \leqslant z$
V	
	二2, 2
	$\sum \square \sum \Delta \sqrt{n z}$
VR2RZR/	
V $\triangle \square \geq \square \sum \square$	Vn
ที入	ทีป

- At the limit, it will reach all points in the square ==> space filling curve

Z-order

visit quadrants recursively in this order: NW, NE, SW, SE

- At the limit, it will reach all points in the square ==> space filling curve

Z-order

visit quadrants recursively in this order: NW, NE, SW, SE

- At the limit, it will reach all points in the square ==> space filling curve

Z-order

visit quadrants recursively in this order: NW, NE, SW, SE

- At the limit, it will reach all points in the square ==> space filling curve
- Every point in the square will be visited by this curve
- $2 \mathrm{D}==>1 \mathrm{D}$

Z-order

visit quadrants recursively in this order: NW, NE, SW, SE

- At the limit, it will reach all points in the square ==> space filling curve
- Every point in the square will be visited by this curve
- $2 \mathrm{D}==>1 \mathrm{D}$

Z-order

visit quadrants recursively in this order: NW, NE, SW, SE

- We visit quadrant 1 before we visit quadrant 2:
$==>$ All points in quadrant 1 comes before all points in quadrant 2

Z-order

visit quadrants recursively in this order: NW, NE, SW, SE

- We visit quadrant 1 before we visit quadrant 2:
$==>$ All points in quadrant 1 comes before all points in quadrant 2

Z-order

visit quadrants recursively in this order: NW, NE, SW, SE

- We visit quadrant 1 before we visit quadrant 2:
$==>$ All points in quadrant 1 comes before all points in quadrant 2

Z-order

visit quadrants recursively in this order: NW, NE, SW, SE

- We visit quadrant 1 before we visit quadrant 2:
$==>$ All points in quadrant 1 comes before all points in quadrant 2

Z-order

visit quadrants recursively in this order: NW, NE, SW, SE

- We visit quadrant 1 before we visit quadrant 2:
$==>$ All points in quadrant 1 comes before all points in quadrant 2

Z-order

visit quadrants recursively in this order: NW, NE, SW, SE

- and so on.....

Z-order

visit quadrants recursively in this order: NW, NE, SW, SE

- and so on.....

Z-order

visit quadrants recursively in this order: NW, NE, SW, SE

- Every canonical square corresponds to an interval of the z-order curve

Z-order

visit quadrants recursively in this order: NW, NE, SW, SE

- Two canonical squares are non-intersecting, or one included in the other

Z-order

visit quadrants recursively in this order: NW, NE, SW, SE

- Any two points can be compared: compare their Z-indices

Z-order

visit quadrants recursively in this order: NW, NE, SW, SE

- Any two points can be compared: compare their Z-indices
- If point a comes before point b on the Z-order curve, it's said that $a<b$

Computing the Z-index

Z_index: R ${ }^{2} \longrightarrow R$
For simplicity assume points with integer coordinates on k bits

- What is the largest integer representable on k bits?

Computing the Z-index

$$
\begin{aligned}
& \text { For simplicity assume points with integer coordinates on } k \text { bits } \\
& \qquad p=\left(x_{1} x_{2} x_{3} \ldots x_{k}, y_{1} y_{2} y_{3} \ldots y_{k}\right) \\
& \quad Z \text { index : }\left\{0, \ldots, 2^{k}-1\right\} \times\left\{0, \ldots, 2^{k}-1\right\} —\left\{0, \ldots, 2^{2 k}-1\right\} \\
& \quad \text { Z_index }(p)=x_{1} y_{1} x_{2} y_{2} \ldots x_{k} y_{k}
\end{aligned}
$$

What is the largest value representable on 2 k bits?

Computing the Z-index

```
For simplicity assume points with integer coordinates on k bits
    p = ( }\mp@subsup{x}{1}{}\mp@subsup{x}{2}{}\mp@subsup{x}{3}{}\ldots\mp@subsup{x}{k}{},\mp@subsup{y}{1}{}\mp@subsup{y}{2}{}\mp@subsup{y}{3}{}\ldots\mp@subsup{y}{k}{}
    Z_index:{0,..,\mp@subsup{2}{}{k}-1}\times{0,..,2k-1}—>{0,..,2k
```


Computing the Z-index

```
For simplicity assume points with integer coordinates on k bits
    p = ( }\mp@subsup{x}{1}{}\mp@subsup{x}{2}{}\mp@subsup{x}{3}{}\ldots\mp@subsup{x}{k}{},\mp@subsup{y}{1}{}\mp@subsup{y}{2}{}\mp@subsup{y}{3}{}\ldots\mp@subsup{y}{k}{}
    Z_index : {0,..,2*-1} x {0,..,2k}-1}\longrightarrow>{0,..,2k-1
```


Computing the Z-index

```
For simplicity assume points with integer coordinates on k bits
    p = ( }\mp@subsup{x}{1}{}\mp@subsup{x}{2}{}\mp@subsup{x}{3}{}\ldots\mp@subsup{x}{k}{},\mp@subsup{y}{1}{}\mp@subsup{y}{2}{}\mp@subsup{y}{3}{}\ldots\mp@subsup{y}{k}{}
    Z_index : {0,..,2*-1} x {0,..,2k}-1}\longrightarrow>{0,..,2k-1
```


Computing the Z-index

Computing the Z-index

Computing the Z-index

For simplicity assume points with integer coordinates on k bits

$$
\begin{aligned}
& p=\left(x_{1} x_{2} x_{3} \ldots x_{k}, y_{1} y_{2} y_{3} \ldots y_{k}\right) \\
& Z _ \text {index : }\left\{0, \ldots, 2^{k}-1\right\} \times\left\{0, \ldots, 2^{k}-1\right\} —\left\{0, \ldots, 2^{2 k}-1\right\} \\
& Z_{-} \text {index }(p)=x_{1} y_{1} x_{2} y_{2} \ldots x_{k} y_{k}
\end{aligned}
$$

Find the Z-order!

Computing the Z-index

- Consider an x-coordinate $x_{1} x_{2} x_{3}$ in the square $[0, \ldots 8)$
- $x_{1}=0$ means the point will reside in the first half
- $x_{1}=1$ means the point will reside in the second half

Computing the Z-index

- Consider an y-coordinate $y_{1} у_{2} у_{3}$ in the square $[0, \ldots 8)$
- $y_{1}=0$ means the point will reside in the first half
- $y_{1}=1$ means the point will reside in the second half

Computing the Z-index

- Consider an y-coordinate $y_{1} у_{2} \mathrm{y}_{3}$ in the square $[0, \ldots 8)$
- $y_{1}=0$ means the point will reside in the first half
- $y_{1}=1$ means the point will reside in the second half

Computing the Z-index

- Consider an y-coordinate $\mathrm{y}_{1} \mathrm{y}_{2} \mathrm{y}_{3}$ in the square $[0, \ldots 8)$
- $y_{1}=0$ means the point will reside in the first half
- $y_{1}=1$ means the point will reside in the second half

Computing the Z-index

- Consider an y-coordinate $\mathrm{y}_{1} \mathrm{y}_{2} \mathrm{y}_{3}$ in the square $[0, \ldots 8)$
- $y_{1}=0$ means the point will reside in the first half
- $y_{1}=1$ means the point will reside in the second half

Computing the Z-index

- Consider an y-coordinate $\mathrm{y}_{1} \mathrm{y}_{2} \mathrm{y}_{3}$ in the square $[0, \ldots 8)$
- $y_{1}=0$ means the point will reside in the first half
- $y_{1}=1$ means the point will reside in the second half

Computing the Z-index

- Consider an y-coordinate $\mathrm{y}_{1} \mathrm{y}_{2} \mathrm{y}_{3}$ in the square $[0, \ldots 8)$
- $y_{1}=0$ means the point will reside in the first half
- $y_{1}=1$ means the point will reside in the second half

Computing the Z-index

- Consider an y-coordinate $\mathrm{y}_{1} \mathrm{y}_{2} \mathrm{y}_{3}$ in the square $[0, \ldots 8)$
- $y_{1}=0$ means the point will reside in the first half
- $y_{1}=1$ means the point will reside in the second half

Computing the Z-index

- Consider an y-coordinate $\mathrm{y}_{1} \mathrm{y}_{2} \mathrm{y}_{3}$ in the square $[0, \ldots 8)$
- $y_{1}=0$ means the point will reside in the first half
- $y_{1}=1$ means the point will reside in the second half

Z-order

- other Z-orders can be obtained similarly

- Can be extended to work with decimal numbers in $[0,1$)
- make values positive (add smallest value)
- divide all values by max value
- ==> now we got values in $[0,1) p=(.1100, .0101)$

Space-filling curves

- Z-order curves are a special type of space-filling curves
- First SFC were described by Peano and Hilbert

Peano curve

Hilbert curve

Spatial locality

Spatial applications usually have spatial locality in their access to data, i.e. they are likely to access together points that are close to each other in space

Spatial locality

Spatial applications usually have spatial locality in their access to data, i.e. they are likely to access together points that are close to each other in space

Spatial locality

Spatial applications usually have spatial locality in their access to data, i.e. they are likely to access together points that are close to each other in space

Spatial locality

Spatial applications usually have spatial locality in their access to data, i.e. they are likely to access together points that are close to each other in space

Spatial locality

Spatial applications usually have spatial locality in their access to data, i.e. they are likely to access together points that are close to each other in space

Spatial locality

Spatial applications usually have spatial locality in their access to data, i.e. they are likely to access together points that are close to each other in space

We would like points "close" in 2D to be stored "close" to each other in the data structure

Spatial locality

grid in default row-major order

Spatial locality

grid in default row-major order

Spatial locality

grid in default row-major order

Does this layout have good spatial locality?

- points $(r, c)(r, c+/-1)$: how far are they in the array?
- points $(r, c),(r+1, c)$: how far are they in the array?

Spatial locality

grid in default row-major order

Does this layout have good spatial locality?

- points $(r, c)(r, c+/-1)$: how far are they in the array?
- points $(r, c),(r+1, c)$: how far are they in the array?

Spatial locality

grid in default row-major order

Does this layout have good spatial locality?

- points $(r, c)(r, c+/-1)$: how far are they in the array?
- points $(r, c),(r+1, c)$: how far are they in the array?

Spatial locality

grid in default row-major order

grid stored in Z-order

Spatial locality

grid in default row-major order

grid stored in Z-order

Spatial locality

grid in default row-major order

grid stored in Z-order

Spatial locality

grid in default row-major order

grid stored in Z-order

Spatial locality

grid in default row-major order

grid stored in Z-order

Spatial locality

grid in default row-major order

grid stored in Z-order

Spatial locality

grid in default row-major order

grid stored in Z-order

Spatial locality

grid in default row-major order

grid stored in Z-order

Spatial locality

Arranging data in order of a space-filling curve improves spatial locality

- points that are close together in space, will be stored close to each other

grid in default row-major order

grid stored in Z-order

Spatial locality

- Big-Oh analysis does not have the final word
- Two algorithms that have the same big-Oh can differ a lot in performance depending on their cache efficiency
- To analyze and fine tune the algorithm we need to look at the performance across all levels of the memory hierarchy

http://classconnection.s3.amazonaws.com/149/flashcards/3088149/png/memory_hierarchy 1367201501848.png

MEMORY HIERARCHY

Indicated are approximate numbers of clock cycles to access the various elements of the memory hierarchy

© 2003 Elsevier Science (USA). All rights reserved.

© 2003 Elsevier Science (USA). All rights reserved.

- At all levels, data is organized and moved in blocks/pages
- Each level acts as a "cache" for the next level: stores most recently used blocks
- Applications that access data that's stored in a "recent" block will find it in cache
- 1 ns vs 100 ns $<-$ SIGNIFICANT!

Spatial locality

- Arranging data in order of a space-filling curve improves spatial locality
- points that are close together in space, will be stored close to each other
=> data will be in the same blocks as previous data
==> data will be found in cache
==> improvements at all levels of the memory hierarchy

- Hilbert curve has better locality than z-order, but slower to compute
- Z-order used with Strassen's algorithm —> speedups (2002)

SFC in art

Don Relyea, artist futurist and tehnologist

- http://www.donrelyea.com/site2015/space-filling-curve-art-2004-2014-wide-format/

