Algorithms for GIS:

Quadtrees

Quadtree

- A data structure that corresponds to a hierarchical subdivision of the plane
- Start with a square (containing inside input data)
- Divide into 4 equal squares (quadrants)
- Continue subdividing each quadrant recursively
- Subdivide a square until it satisfies a stopping condition, usually that a quadrant is "small" enough
- for e.g. contains at most 1 point

H

Quadtrees

Quadtrees

- Conceptually simple data structure

Quadtrees

- Conceptually simple data structure
- Generalizes to d dimensions

Quadtrees

- Conceptually simple data structure
- Generalizes to d dimensions
- $d=3$: octree

Quadtrees

- Conceptually simple data structure
- Generalizes to d dimensions
- $d=3$: octree

Quadtrees

- Conceptually simple data structure
- Generalizes to d dimensions
- d=3: octree
- Can be built for many types of data

Quadtrees

- Conceptually simple data structure
- Generalizes to d dimensions
- d=3: octree
- Can be built for many types of data

- points, edges, polygons, images, etc

Quadtrees

- Conceptually simple data structure
- Generalizes to d dimensions
- d=3: octree
- Can be built for many types of data

- points, edges, polygons, images, etc
- Can be used for many different tasks

Quadtrees

- Conceptually simple data structure
- Generalizes to d dimensions
- d=3: octree
- Can be built for many types of data

- points, edges, polygons, images, etc
- Can be used for many different tasks
- search, point location, neighbors, joins, unions, etc

Quadtrees

- Conceptually simple data structure
- Generalizes to d dimensions
- d=3: octree
- Can be built for many types of data

- points, edges, polygons, images, etc
- Can be used for many different tasks
- search, point location, neighbors, joins, unions, etc
- dynamic

Quadtrees

- Conceptually simple data structure
- Generalizes to d dimensions
- d=3: octree
- Can be built for many types of data

- points, edges, polygons, images, etc
- Can be used for many different tasks
- search, point location, neighbors, joins, unions, etc
- dynamic
- Theoretical bounds not great, but widely used in practice

Quadtrees

- Conceptually simple data structure
- Generalizes to d dimensions
- d=3: octree

- Can be built for many types of data

- points, edges, polygons, images, etc
- Can be used for many different tasks
- search, point location, neighbors, joins, unions, etc
- dynamic
- Theoretical bounds not great, but widely used in practice
- LOTS of applications

Quadtrees

- Conceptually simple data structure
- Generalizes to d dimensions
- $d=3$: octree
- Can be built for many types of data

- points, edges, polygons, images, etc
- Can be used for many different tasks
- search, point location, neighbors, joins, unions, etc
- dynamic
- Theoretical bounds not great, but widely used in practice
- LOTS of applications
- Many variants of quadtrees have been proposed

Quadtrees

- Conceptually simple data structure
- Generalizes to d dimensions
- d=3: octree
- Can be built for many types of data

- points, edges, polygons, images, etc
- Can be used for many different tasks
- search, point location, neighbors, joins, unions, etc
- dynamic
- Theoretical bounds not great, but widely used in practice
- LOTS of applications
- Many variants of quadtrees have been proposed
- Hundreds of papers

3.bp.blogspot.com/-7m6WQacRMEE/TW82n70i-VI/AAAAAAAAAH8/oOCuQOL_AH4/s400/Screen\%2Bshot\%2B2011-03-0. C

chrisbrough.com/images/quadtree/terrain-angle-low.png

electronicimaging.spiedigitallibrary.org/data/Journals/ELECTIM/22287/501504jei2.jpeg

Outline

- Point quadtrees

Point-quadtree

Let $\mathrm{P}=$ set of n points in the plane

Problem: Store P in a quadtree such that every square has $<=1$ point.

Questions:

1. Size? Height?
2. How to build it and how fast?
3. What can we do with it?

$$
\text { Let } P=\text { set of } n \text { points in the plane }
$$

Let $\mathrm{P}=$ set of n points in the plane

Let $P=$ set of n points in the plane

Let $\mathrm{P}=$ set of n points in the plane

Let $\mathrm{P}=$ set of n points in the plane

Quadtree: tree corresponding to the subdivision

Let $P=$ set of n points in the plane

Quadtree: tree corresponding to the subdivision

Let $P=$ set of n points in the plane

Quadtree: tree corresponding to the subdivision

Let $P=$ set of n points in the plane

Quadtree: tree corresponding to the subdivision

Let $P=$ set of n points in the plane

Quadtree: tree corresponding to the subdivision

Let $P=$ set of n points in the plane

Quadtree: tree corresponding to the subdivision

Let $P=$ set of n points in the plane

Quadtree: tree corresponding to the subdivision

Let $P=$ set of n points in the plane

Quadtree: tree corresponding to the subdivision

Let $P=$ set of n points in the plane

Quadtree: tree corresponding to the subdivision

Let $P=$ set of n points in the plane

Quadtree: tree corresponding to the subdivision

Let $P=$ set of n points in the plane

Quadtree: tree corresponding to the subdivision

Let $P=$ set of n points in the plane

Quadtree: tree corresponding to the subdivision

Let $P=$ set of n points in the plane

Quadtree: tree corresponding to the subdivision

Exercises

- Pick $\mathrm{n}=10$ points in the plane and draw their quadtree.
- Show a set of (10) points that have a balanced quadtree.
- Show a set of (10) points that have an unbalanced quadtree.
- Draw the quadtree corresponding to a regular grid
- how many nodes does it have?
- how many leaves? height?
- Consider a set of points with a uniform distribution. What can you say about the quadtree ?
- Let's look at sets of 2 points in the plane.
- Sketch the smallest possible quad tree for two points in the plane.
- Sketch the largest possible quad tree for two points in the plane.
- An upper bound for the height of a quadtree for 2 points ????

Quadtree size

$$
P=\text { set of } n \text { points in the plane }
$$

Quadtree size

$$
P=\text { set of } n \text { points in the plane }
$$

Theorem:

Theorem:
The height of a quadtree storing P is at most $\lg (s / d)+3 / 2$, where s is the side of the original square and d is the distance between the closest pair of points in P.

Theorem:

The height of a quadtree storing P is at most $\lg (s / d)+3 / 2$, where s is the side of the original square and d is the distance between the closest pair of points in P.

Proof:

- Each level divides the side of the quadrant into two. After i levels, the side of the quadrant is $\mathrm{s} / 2^{i}$
- A quadrant will be split as long as the two closest points will fit inside it.
- In the worst case the closest points will fit diagonally in a quadrant and the "last" split will happen at depth i such that s sqrt(2)/2 $=\mathrm{d} .$. .
- The height of the tree is $i+1$

Theorem:

The height of a quadtree storing P is at most $\lg (s / d)+3 / 2$, where s is the side of the original square and d is the distance between the closest pair of points in P.

Proof:

- Each level divides the side of the quadrant into two. After i levels, the side of the quadrant is $\mathrm{s} / 2^{i}$
- A quadrant will be split as long as the two closest points will fit inside it.
- In the worst case the closest points will fit diagonally in a quadrant and the "last" split will happen at depth i such that s sqrt(2)/2 $=\mathrm{d} .$. .
- The height of the tree is $i+1$
- What does this mean?
- The distance between points can be arbitrarily small, so the height of a quadtree can be arbitrarily large in the worst case

Building a quadtree

Let $\mathrm{P}=$ set of n points in the plane

Building a quadtree

Let $P=$ set of n points in the plane

- Let's come up with a (recursive) algorithm to build quadtree of P

Building a quadtree

Let $P=$ set of n points in the plane

- Let's come up with a (recursive) algorithm to build quadtree of P

Building a quadtree

- Let's come up with a (recursive) algorithm to build quadtree of P
//create quadtree of P and return its root
buildQuadtree(set of points P, square S)

Building a quadtree

Let $\mathrm{P}=$ set of n points in the plane

Building a quadtree

Let $P=$ set of n points in the plane
//create quadtree of P and return its root

Building a quadtree

Let $P=$ set of n points in the plane

//create quadtree of P and return its root

buildQuadtree(set of points P, square S)

Building a quadtree

$$
\text { Let } P=\text { set of } n \text { points in the plane }
$$

//create quadtree of P and return its root

buildQuadtree(set of points P, square S)

- if P has at most one point:

Building a quadtree

//create quadtree of P and return its root

buildQuadtree(set of points P, square S)

- if P has at most one point:
- build a leaf node, store P in it, and return node

Building a quadtree

//create quadtree of P and return its root

buildQuadtree(set of points P, square S)

- if P has at most one point:
- build a leaf node, store P in it, and return node
- else

Building a quadtree

Let $P=$ set of n points in the plane

//create quadtree of P and return its root

buildQuadtree(set of points P, square S)

- if P has at most one point:
- build a leaf node , store P in it, and return node
- else
- partition S into 4 quadrants S1, S2, S3, S4 and use them to partition P into $\mathrm{P} 1, \mathrm{P} 2, \mathrm{P} 3, \mathrm{P} 4$

Building a quadtree

Let $P=$ set of n points in the plane

//create quadtree of P and return its root

buildQuadtree(set of points P, square S)

- if P has at most one point:
- build a leaf node , store P in it, and return node
- else
- partition S into 4 quadrants S1, S2, S3, S4 and use them to partition P into $\mathrm{P} 1, \mathrm{P} 2, \mathrm{P} 3, \mathrm{P} 4$
- create a node

Building a quadtree

//create quadtree of P and return its root

buildQuadtree(set of points P, square S)

- if P has at most one point:
- build a leaf node , store P in it, and return node
- else
- partition S into 4 quadrants S1, S2, S3, S4 and use them to partition P into P1, P2, P3, P4
- create a node
- node ->child1 = buildQuadtree(P1, S1)

Building a quadtree

//create quadtree of P and return its root

buildQuadtree(set of points P, square S)

- if P has at most one point:
- build a leaf node , store P in it, and return node
- else
- partition S into 4 quadrants S1, S2, S3, S4 and use them to partition P into P1, P2, P3, P4
- create a node
- node ->child1 = buildQuadtree(P1, S1)
- node ->child2 = buildQuadtree(P2, S2)

Building a quadtree

//create quadtree of P and return its root

buildQuadtree(set of points P, square S)

- if P has at most one point:
- build a leaf node , store P in it, and return node
- else
- partition S into 4 quadrants S1, S2, S3, S4 and use them to partition P into P1, P2, P3, P4
- create a node
- node ->child1 = buildQuadtree(P1, S1)
- node ->child2 = buildQuadtree(P2, S2)
- node ->child3 = buildQuadtree(P3, S3)

Building a quadtree

//create quadtree of P and return its root

buildQuadtree(set of points P, square S)

- if P has at most one point:
- build a leaf node , store P in it, and return node
- else
- partition S into 4 quadrants S1, S2, S3, S4 and use them to partition P into P1, P2, P3, P4
- create a node
- node ->child1 = buildQuadtree(P1, S1)
- node ->child2 = buildQuadtree(P2, S2)
- node ->child3 = buildQuadtree(P3, S3)
- node ->child4 = buildQuadtree(P4, S4)

Building a quadtree

//create quadtree of P and return its root

buildQuadtree(set of points P, square S)

- if P has at most one point:
- build a leaf node, store P in it, and return node
- else
- partition S into 4 quadrants S1, S2, S3, S4 and use them to partition P into P1, P2, P3, P4
- create a node
- node ->child1 = buildQuadtree(P1, S1)
- node ->child2 = buildQuadtree(P2, S2)
- node ->child3 = buildQuadtree(P3, S3)
- node ->child4 = buildQuadtree(P4, S4)
- return node

Building a quadtree

//create quadtree of P and return its root

buildQuadtree(set of points P, square S)

- if P has at most one point:
- build a leaf node, store P in it, and return node
- else
- partition S into 4 quadrants S1, S2, S3, S4 and use them to partition P into P1, P2, P3, P4
- create a node
- node ->child1 = buildQuadtree(P1, S1)
- node ->child2 = buildQuadtree(P2, S2)
- node ->child3 = buildQuadtree(P3, S3)
- node ->child4 = buildQuadtree(P4, S4)
- return node

How long does this take, function of n and height h ?

Building a quadtree

- Total time $=$ total time in partitioning + total time in recursion

Partitioning

- Partitioning P into P1, P2, P3, P4 runs in time $\mathrm{O}(|\mathrm{P}|)$
- We cannot bound P1, P2, P3, P4 (each can have anywhere between 0 points and n points)
- But if we look at all nodes at same level in the quadtree: together they form a partition of the input square and the union of their points is P
$==>$ The time to partition, at every level, is $\mathrm{O}(\mathrm{n})$
$==>$ Summed over the entire quadtree partition will take $O(h \times n)$ in total

Building a quadtree
Let $P=$ set of n points in the plane

- Recursion
- Every recursive call creates a node
- How many nodes?

Building a quadtree

How many nodes?

Building a quadtree

How many nodes?

- \quad nodes $(N)=$ internal nodes $(\mathrm{I})+$ leaves (L)

Building a quadtree

How many nodes?

- \quad nodes $(N)=$ internal nodes $(\mathrm{I})+$ leaves (L)

Building a quadtree

How many nodes?

- \quad nodes $(N)=$ internal nodes $(\mathrm{I})+$ leaves (L)
- Each node has 0 or 4 children

Building a quadtree

How many nodes?

- \quad nodes $(N)=$ internal nodes $(\mathrm{I})+$ leaves (L)
- Each node has 0 or 4 children

Building a quadtree

How many nodes?

- \quad nodes $(N)=$ internal nodes $(I)+$ leaves (L)
- Each node has 0 or 4 children
- A relation between I and L?

Building a quadtree

How many nodes?

- \quad nodes $(N)=$ internal nodes $(I)+$ leaves (L)
- Each node has 0 or 4 children
- A relation between I and L?

$$
L=3 I+1
$$

(Proof: by induction)

Building a quadtree

How many nodes?

Building a quadtree

How many nodes?

- \quad nodes $(N)=$ internal nodes $(I)+$ leaves (L)

Building a quadtree

How many nodes?

- \quad nodes $(N)=$ internal nodes $(I)+$ leaves (L)
- $L=3 I+1 \longrightarrow N=I+3|+1=4|+1$

Building a quadtree

How many nodes?

- \quad nodes $(N)=$ internal nodes $(I)+$ leaves (L)
- $L=3 I+1 \longrightarrow N=|+3|+1=4 \mid+1$
- How many internal nodes?

Building a quadtree

How many nodes?

- nodes $(\mathrm{N})=$ internal nodes $(\mathrm{I})+$ leaves (L)
- $L=3 I+1 \longrightarrow N=|+3|+1=4 \mid+1$
- How many internal nodes?
- can be unbounded

Building a quadtree

How many nodes?

- nodes $(\mathrm{N})=$ internal nodes $(\mathrm{I})+$ leaves (L)
- $L=3 I+1 \longrightarrow N=|+3|+1=4 \mid+1$
- How many internal nodes?
- can be unbounded
- want to express function of h

Building a quadtree

How many nodes?

- nodes $(\mathrm{N})=$ internal nodes $(\mathrm{I})+$ leaves (L)
- $L=3 I+1 \longrightarrow N=|+3|+1=4 \mid+1$
- How many internal nodes?
- can be unbounded
- want to express function of h

Building a quadtree

How many nodes?

- \quad nodes $(N)=$ internal nodes $(I)+$ leaves (L)
- $L=3 I+1 \longrightarrow N=|+3|+1=4 \mid+1$
- How many internal nodes?
- can be unbounded
- want to express function of h
- in the best case each leaf contains one point (no empty leaves); in the worst case there can be many empty leaves ==> many internal nodes

Building a quadtree

How many nodes?

- \quad nodes $(N)=$ internal nodes $(I)+$ leaves (L)
- $L=3 I+1 \longrightarrow N=|+3|+1=4 \mid+1$
- How many internal nodes?
- can be unbounded
- want to express function of h
- in the best case each leaf contains one point (no empty leaves); in the worst case there can be many empty leaves ==> many internal nodes

Building a quadtree

How many nodes?

- \quad nodes $(N)=$ internal nodes $(I)+$ leaves (L)
- $L=3 I+1 \longrightarrow N=|+3|+1=4 \mid+1$
- How many internal nodes?
- can be unbounded
- want to express function of h
- in the best case each leaf contains one point (no empty leaves); in the worst case there can be many empty leaves ==> many internal nodes
- at each level, the internal nodes partition the original square and each internal node contains at least 2 points ==> O(n) internal nodes per level $\longrightarrow \mathrm{O}(\mathrm{n} \times \mathrm{h})$

Building a quadtree

How many nodes?

- \quad nodes $(N)=$ internal nodes $(I)+$ leaves (L)
- $L=3 I+1 \longrightarrow N=I+3|+1=4|+1$
- How many internal nodes?
- can be unbounded
- want to express function of h
- in the best case each leaf contains one point (no empty leaves); in the worst case there can be many empty leaves ==> many internal nodes
- at each level, the internal nodes partition the original square and each internal node contains at least 2 points ==> O(n) internal nodes per level $\longrightarrow \mathrm{O}(\mathrm{n} \times \mathrm{h})$
$O(n \times h)$ nodes

Summary

Theorem:

A quadtree for a set P of points in the plane:

- has height $\mathrm{h}=\mathrm{O}(\lg (1 / \mathrm{d}))$ (where d is closest distance)
- has $O(h \times n)$ nodes; and
- can be built in $O(h \times n)$ time.

Summary

Theorem:

A quadtree for a set P of points in the plane:

- has height $\mathrm{h}=\mathrm{O}(\lg (1 / \mathrm{d}))$ (where d is closest distance)
- has $O(h \times n)$ nodes; and
- can be built in $O(h \times n)$ time.
- Theoretical worst case:

Summary

Theorem:

A quadtree for a set P of points in the plane:

- has height $h=O(\lg (1 / d))$ (where d is closest distance)
- has $O(h \times n)$ nodes; and
- can be built in $O(h \times n)$ time.
- Theoretical worst case:
- height and size are unbounded

Summary

Theorem:

A quadtree for a set P of points in the plane:

- has height $h=O(\lg (1 / d))$ (where d is closest distance)
- has $O(h \times n)$ nodes; and
- can be built in $O(h \times n)$ time.
- Theoretical worst case:
- height and size are unbounded
- In practice:

Summary

Theorem:

A quadtree for a set P of points in the plane:

- has height $h=O(\lg (1 / d))$ (where d is closest distance)
- has $O(h \times n)$ nodes; and
- can be built in $O(h \times n)$ time.
- Theoretical worst case:
- height and size are unbounded
- In practice:
- often $h=O(n)==>$ size $=O\left(n^{2}\right)$, build time is $O\left(n^{2}\right)$

Summary

Theorem:

A quadtree for a set P of points in the plane:

- has height $h=O(\lg (1 / d))$ (where d is closest distance)
- has $O(h \times n)$ nodes; and
- can be built in $\mathrm{O}(\mathrm{h} \times \mathrm{n})$ time.
- Theoretical worst case:
- height and size are unbounded
- In practice:
- often $h=O(n)==>$ size $=O\left(n^{2}\right)$, build time is $O\left(n^{2}\right)$
- For sets of points that are uniformly distributed, quadtrees have height $h=O(\lg n)$, size $O(n)$ and can be built in $O(n \lg n)$ time.

Compressed (point) quadtrees

Exercise

- Draw a quadtree of arbitrarily large size corresponding to a small set of points in the plane (pick $n=2$ or $n=3$).
- How many leaves are empty / non-empty?
- Why is the size of the quadtree super-linear?
- Compress the quadtree as follows:
- compress paths of nodes with 3 empty children into one node
- this node is called a donut
- a node may have 5 children, an empty donut + 4 regular quadrants

Compressed quadtrees

A compressed quadtree is a regular quadtree where paths of nodes with 3 empty children are compressed into one node (called: donut)

- a node may have 5 children, an empty donut + 4 regular quadrants

Compressed quadtrees

Let $P=$ set of n points in the plane

A compressed quadtree is a regular quadtree where paths of nodes with 3 empty children are compressed into one node (called: donut)

- a node may have 5 children, an empty donut + 4 regular quadrants

Compressed quadtrees

A compressed quadtree is a regular quadtree where paths of nodes with 3 empty children are compressed into one node (called: donut)

- a node may have 5 children, an empty donut + 4 regular quadrants
- What does this mean in terms of size?

Compressed quadtrees

A compressed quadtree is a regular quadtree where paths of nodes with 3 empty children are compressed into one node (called: donut)

- a node may have 5 children, an empty donut + 4 regular quadrants
- What does this mean in terms of size?

Theorem: A compressed quadtree has $\mathrm{O}(\mathrm{n})$ nodes and $\mathrm{h}=\mathrm{O}(\mathrm{n})$ height.

Compressed quadtrees

A compressed quadtree is a regular quadtree where paths of nodes with 3 empty children are compressed into one node (called: donut)

- a node may have 5 children, an empty donut + 4 regular quadrants
- What does this mean in terms of size?

Theorem: A compressed quadtree has $\mathrm{O}(\mathrm{n})$ nodes and $\mathrm{h}=\mathrm{O}(\mathrm{n})$ height.

- Can you argue why..?

Applications of quadtrees

Applications of quadtrees

- Hundreds of papers
- Specialized quadtrees
- customized for specific types of data (images, edges, polygons)
- customized for specific applications
- customized for large data
- Used to answer queries on spatial data such as:
- point location
- nearest neighbor (NN)
- k-NNs
- range searching
- find all segments intersecting a given segment
- meshing
- ...

Example: Neighbor finding

Given a node v and a direction (N, S, E, W) find a node v^{\prime} such that region(v^{\prime}) is adjacent to region(v) in the given direction.

- two regions (squares) are adjacent iff they share an edge

Example: Neighbor finding

Given a node v and a direction (N, S, E, W) find a node v^{\prime} such that region(v^{\prime}) is adjacent to region(v) in the given direction.

- two regions (squares) are adjacent iff they share an edge

Example: Neighbor finding

Given a node v and a direction (N, S, E, W) find a node v^{\prime} such that region(v^{\prime}) is adjacent to region(v) in the given direction.

- two regions (squares) are adjacent iff they share an edge

NORTH_Neighbor= \square

Example: Neighbor finding

Given a node v and a direction (N, S, E, W) find a node v^{\prime} such that region(v^{\prime}) is adjacent to region(v) in the given direction.

- two regions (squares) are adjacent iff they share an edge

Example: Neighbor finding

Given a node v and a direction (N, S, E, W) find a node v^{\prime} such that region(v^{\prime}) is adjacent to region(v) in the given direction.

- two regions (squares) are adjacent iff they share an edge

Example: Neighbor finding

Given a node v and a direction (N, S, E, W) find a node v^{\prime} such that region(v^{\prime}) is adjacent to region(v) in the given direction.

- two regions (squares) are adjacent iff they share an edge

Example: Neighbor finding

Given a node v and a direction (N, S, E, W) find a node v^{\prime} such that region(v^{\prime}) is adjacent to region(v) in the given direction.

- two regions (squares) are adjacent iff they share an edge

Example: Neighbor finding

Given a node v and a direction (N, S, E, W) find a node v^{\prime} such that region(v^{\prime}) is adjacent to region(v) in the given direction.

- two regions (squares) are adjacent iff they share an edge

Example: Neighbor finding

Given a node v and a direction (N, S, E, W) find a node v^{\prime} such that region(v^{\prime}) is adjacent to region(v) in the given direction.

- two regions (squares) are adjacent iff they share an edge

Example: Neighbor finding

Given a node v and a direction (N, S, E, W) find a node v^{\prime} such that region(v^{\prime}) is adjacent to region(v) in the given direction.

- two regions (squares) are adjacent iff they share an edge

Example: Neighbor finding

Given a node v and a direction (N, S, E, W) find a node v^{\prime} such that region(v^{\prime}) is adjacent to region(v) in the given direction.

- two regions (squares) are adjacent iff they share an edge

Example: Neighbor finding

Given a node v and a direction (N, S, E, W) find a node v^{\prime} such that region(v^{\prime}) is adjacent to region (v) in the given direction.

- two regions (squares) are adjacent iff they share an edge

Example: Neighbor finding

Given a node v and a direction (N, S, E, W) find a node v^{\prime} such that region(v^{\prime}) is adjacent to region (v) in the given direction.

- two regions (squares) are adjacent iff they share an edge

Example: Neighbor finding

Given a node v and a direction (N, S, E, W) find a node v^{\prime} such that region(v^{\prime}) is adjacent to region (v) in the given direction.

- two regions (squares) are adjacent iff they share an edge

Example: Neighbor finding

Given a node v and a direction (N, S, E, W) find a node v^{\prime} such that region(v^{\prime}) is adjacent to region (v) in the given direction.

- two regions (squares) are adjacent iff they share an edge

Visualizing it on the tree..

- try to find a node v' at the same depth as v
- if not possible, find the deepest

Visualizing it on the tree..

- try to find a node v' at the same depth as v
- if not possible, find the deepest

Visualizing it on the tree..

- try to find a node v' at the same depth as v
- if not possible, find the deepest

Visualizing it on the tree..

- try to find a node v' at the same depth as v
- if not possible, find the deepest

Visualizing it on the tree..

- try to find a node v' at the same depth as v
- if not possible, find the deepest

Visualizing it on the tree..

- try to find a node v' at the same depth as v
- if not possible, find the deepest

Visualizing it on the tree..

- try to find a node v' at the same depth as v
- if not possible, find the deepest

Is the North_neighbor always a sibling or an uncle?

Visualizing it on the tree..

- try to find a node v' at the same depth as v
- if not possible, find the deepest

Visualizing it on the tree..

- try to find a node v' at the same depth as v
- if not possible, find the deepest

Come up with an example where the search for a
North_neighbor
is a great-uncle

Example: Neighbor finding

Come up with an example where the North_neighbor is a

- great-uncle.
- great-great-uncle
- ...

Example: Neighbor finding

//input: a node v in a quadtree
//output: the deepest node v' whose depth is at most the depth of v such that region(v^{\prime}) is a north-neighbor of region(v), and NULL if there is no such node

North_Neighbor(v)

- if $\mathrm{v}==$ root: ...
- if $\mathrm{v}==$ SW-child of parent(v$)$:...
- if $\mathrm{v}==$ SE-child of parent(v): ...
//if we reached here, v must be NW or NE child
- $\mathrm{x}<$ —— North_Neighbor(parent(v))
- if x is NULL or a leaf:
-
- else:

Example: Neighbor finding

//input: a node v in a quadtree
//output: the deepest node v' whose depth is at most the depth of v such that region(v^{\prime}) is a north-neighbor of region(v), and NULL if there is no such node

North_Neighbor(v)

- if $\mathrm{v}==$ root: return NULL
- if $v==S W$-child of parent (v) : return NW-child of parent(v)
- if $\mathrm{v}==$ SE-child of parent(v): return NE-child of parent(v)
//if we reached here, v must be NW or NE child
- $\mathrm{x}<$ —— North_Neighbor(parent(v))
- if x is NULL or a leaf: return x
- else:
- if $v==N W$-child of parent(v$)$: return SW-child (x)
- else: return SE-child(x)

Example: Neighbor finding

//input: a node v in a quadtree
//output: the deepest node v' whose depth is at most the depth of v such that region(v^{\prime}) is a north-neighbor of region(v), and NULL if there is no such node

North_Neighbor(v)

- if $\mathrm{v}==$ root: return NULL
- if $v==S W$-child of parent (v) : return NW-child of parent(v)
- if $\mathrm{v}==$ SE-child of parent (v) : return NE-child of parent(v)
//if we reached here, v must be NW or NE child
- $x<$ - North_Neighbor(parent(v))
- if x is NULL or a leaf: return x
- else:
- if $v==N W$-child of parent(v): return SW-child(x)
- else: return SE-child(x)

More applications

- Used to answer queries on spatial data such as:
- point location
- nearest neighbor (NN)
- k-NNs

How would you do these?

- range searching
- find all segments intersecting a given segment
- meshing

Applications

- Image analysis/compression

Applications

- Used for fast rendering (LOD)
- Level i in the qdt \longrightarrow scene at a certain resolution
- bottom level has full resolution
- render scene at a resolution dependent on its distance from the viewpoint

Figure 3 LOD selection of quadtree nodes (the frustum culled section is shaded in dark).

Figure 5 Distribution of $L O D$ levels and nodes (different colors represent different layers).

