Algorithms for GIS:

- A data structure that corresponds to a hierarchical subdivision of the plane
- Start with a square (containing inside input data)
 - Divide into 4 equal squares (quadrants)
 - Continue subdividing each quadrant recursively
 - Subdivide a square until it satisfies a stopping condition, usually that a quadrant is "small" enough
 - for e.g. contains at most 1 point

800 0 0 00 8 40 8 40 8 7 8	8 9 8 99 8 9 8 99 8 9 8 99 8 9 8 99 9 9 9 9		
			0000000
			°.
		0 0 0	• •

• Conceptually simple data structure

- Conceptually simple data structure
- Generalizes to d dimensions

- Conceptually simple data structure
- Generalizes to d dimensions
 - d=3: octree

- Conceptually simple data structure
- Generalizes to d dimensions
 - d=3: octree

- Conceptually simple data structure
- Generalizes to d dimensions
 - d=3: octree
- Can be built for many types of data

- Conceptually simple data structure
- Generalizes to d dimensions
 - d=3: octree
- Can be built for many types of data
 - points, edges, polygons, images, etc

- Conceptually simple data structure
- Generalizes to d dimensions
 - d=3: octree
- Can be built for many types of data
 - points, edges, polygons, images, etc
- Can be used for many different tasks

- Conceptually simple data structure
- Generalizes to d dimensions
 - d=3: octree
- Can be built for many types of data
 - points, edges, polygons, images, etc
- Can be used for many different tasks
 - search, point location, neighbors, joins, unions, etc

- Conceptually simple data structure
- Generalizes to d dimensions
 - d=3: octree
- Can be built for many types of data
 - points, edges, polygons, images, etc
- Can be used for many different tasks
 - search, point location, neighbors, joins, unions, etc
 - dynamic

- Conceptually simple data structure
- Generalizes to d dimensions
 - d=3: octree
- Can be built for many types of data
 - points, edges, polygons, images, etc
- Can be used for many different tasks
 - search, point location, neighbors, joins, unions, etc
 - dynamic
- Theoretical bounds not great, but widely used in practice

- Conceptually simple data structure
- Generalizes to d dimensions
 - d=3: octree
- Can be built for many types of data
 - points, edges, polygons, images, etc
- Can be used for many different tasks
 - search, point location, neighbors, joins, unions, etc
 - dynamic
- Theoretical bounds not great, but widely used in practice
- LOTS of applications

- Conceptually simple data structure
- Generalizes to d dimensions
 - d=3: octree
- Can be built for many types of data
 - points, edges, polygons, images, etc
- Can be used for many different tasks
 - search, point location, neighbors, joins, unions, etc
 - dynamic
- Theoretical bounds not great, but widely used in practice
- LOTS of applications
 - Many variants of quadtrees have been proposed

- Conceptually simple data structure
- Generalizes to d dimensions
 - d=3: octree
- Can be built for many types of data
 - points, edges, polygons, images, etc
- Can be used for many different tasks
 - search, point location, neighbors, joins, unions, etc
 - dynamic
- Theoretical bounds not great, but widely used in practice
- LOTS of applications
 - Many variants of quadtrees have been proposed
 - Hundreds of papers

electronicimaging.spiedigitallibrary.org/data/Journals/ELECTIM/22287/501504jei2.jpeg

nup.geveloper.nvidia.com/GPUGems2/elementLinks/37_octree_03.jpg

Outline

• Point quadtrees

Illustrate the core properties of quadtrees

• Extensions and applications

Mark Overmars
Computational
Geometry

Mark de Berg

Otfried Cheong

Marc van Kreveld

Copyrighted Material

Algorithms and Applications Third Edition

D Springer

opyrighted Material

Problem: Store P in a quadtree such that every square has <= 1 point.

Questions:

- 1. Size? Height?
- 2. How to build it and how fast?
- 3. What can we do with it?

Exercises

- Pick n=10 points in the plane and draw their quadtree.
- Show a set of (10) points that have a balanced quadtree.
- Show a set of (10) points that have an unbalanced quadtree.
- Draw the quadtree corresponding to a regular grid
 - how many nodes does it have?
 - how many leaves? height?
- Consider a set of points with a uniform distribution. What can you say about the quadtree ?
- Let's look at sets of 2 points in the plane.
 - Sketch the smallest possible quad tree for two points in the plane.
 - Sketch the largest possible quad tree for two points in the plane.
 - An upper bound for the height of a quadtree for 2 points ????

Quadtree size

Theorem:

Theorem:

The height of a quadtree storing P is at most $\lg (s/d) + 3/2$, where s is the side of the original square and d is the distance between the closest pair of points in P.

Theorem:

The height of a quadtree storing P is at most $\lg (s/d) + 3/2$, where s is the side of the original square and d is the distance between the closest pair of points in P.

Proof:

- Each level divides the side of the quadrant into two. After i levels, the side of the quadrant is s/2ⁱ
- A quadrant will be split as long as the two closest points will fit inside it.
- In the worst case the closest points will fit diagonally in a quadrant and the "last" split will happen at depth i such that s sqrt(2)/2ⁱ = d...
- The height of the tree is i+1

Theorem:

The height of a quadtree storing P is at most $\lg (s/d) + 3/2$, where s is the side of the original square and d is the distance between the closest pair of points in P.

Proof:

- Each level divides the side of the quadrant into two. After i levels, the side of the quadrant is s/2ⁱ
- A quadrant will be split as long as the two closest points will fit inside it.
- In the worst case the closest points will fit diagonally in a quadrant and the "last" split will happen at depth i such that s sqrt(2)/2ⁱ = d...
- The height of the tree is i+1
- What does this mean?
 - The distance between points can be arbitrarily small, so the height of a quadtree can be arbitrarily large in the worst case

Let P = set of n points in the plane

• Let's come up with a (recursive) algorithm to build quadtree of P

Let P = set of n points in the plane

• Let's come up with a (recursive) algorithm to build quadtree of P

//create quadtree of P and return its root

Let P = set of n points in the plane

• Let's come up with a (recursive) algorithm to build quadtree of P

//create quadtree of P and return its root

//create quadtree of P and return its root

Let P = set of n points in the plane

//create quadtree of P and return its root

Let P = set of n points in the plane

//create quadtree of P and return its root

buildQuadtree(set of points P, square S)

• if P has at most one point:

Let P = set of n points in the plane

//create quadtree of P and return its root

- if P has at most one point:
 - build a leaf node, store P in it, and return node

Let P = set of n points in the plane

//create quadtree of P and return its root

- if P has at most one point:
 - build a leaf node, store P in it, and return node
- else

Let P = set of n points in the plane

//create quadtree of P and return its root

- if P has at most one point:
 - build a leaf node, store P in it, and return node
- else
 - partition S into 4 quadrants S1, S2, S3, S4 and use them to partition P into P1, P2, P3, P4

Let P = set of n points in the plane

//create quadtree of P and return its root

- if P has at most one point:
 - build a leaf node, store P in it, and return node
- else
 - partition S into 4 quadrants S1, S2, S3, S4 and use them to partition P into P1, P2, P3, P4
 - create a node

Let P = set of n points in the plane

//create quadtree of P and return its root

- if P has at most one point:
 - build a leaf node, store P in it, and return node
- else
 - partition S into 4 quadrants S1, S2, S3, S4 and use them to partition P into P1, P2, P3, P4
 - create a node
 - node ->child1 = buildQuadtree(P1, S1)

Let P = set of n points in the plane

//create quadtree of P and return its root

- if P has at most one point:
 - build a leaf node, store P in it, and return node
- else
 - partition S into 4 quadrants S1, S2, S3, S4 and use them to partition P into P1, P2, P3, P4
 - create a node
 - node ->child1 = buildQuadtree(P1, S1)
 - node ->child2 = buildQuadtree(P2, S2)

Let P = set of n points in the plane

//create quadtree of P and return its root

- if P has at most one point:
 - build a leaf node, store P in it, and return node
- else
 - partition S into 4 quadrants S1, S2, S3, S4 and use them to partition P into P1, P2, P3, P4
 - create a node
 - node ->child1 = buildQuadtree(P1, S1)
 - node ->child2 = buildQuadtree(P2, S2)
 - node ->child3 = buildQuadtree(P3, S3)

Let P = set of n points in the plane

//create quadtree of P and return its root

- if P has at most one point:
 - build a leaf node, store P in it, and return node
- else
 - partition S into 4 quadrants S1, S2, S3, S4 and use them to partition P into P1, P2, P3, P4
 - create a node
 - node ->child1 = buildQuadtree(P1, S1)
 - node ->child2 = buildQuadtree(P2, S2)
 - node ->child3 = buildQuadtree(P3, S3)
 - node ->child4 = buildQuadtree(P4, S4)

Let P = set of n points in the plane

//create quadtree of P and return its root

- if P has at most one point:
 - build a leaf node, store P in it, and return node
- else
 - partition S into 4 quadrants S1, S2, S3, S4 and use them to partition P into P1, P2, P3, P4
 - create a node
 - node ->child1 = buildQuadtree(P1, S1)
 - node ->child2 = buildQuadtree(P2, S2)
 - node ->child3 = buildQuadtree(P3, S3)
 - node ->child4 = buildQuadtree(P4, S4)
 - return node

Let P = set of n points in the plane

//create quadtree of P and return its root

buildQuadtree(set of points P, square S)

- if P has at most one point:
 - build a leaf node, store P in it, and return node
- else
 - partition S into 4 quadrants S1, S2, S3, S4 and use them to partition P into P1, P2, P3, P4
 - create a node
 - node ->child1 = buildQuadtree(P1, S1)
 - node ->child2 = buildQuadtree(P2, S2)
 - node ->child3 = buildQuadtree(P3, S3)
 - node ->child4 = buildQuadtree(P4, S4)
 - return node

How long does this take, function of n and height h?

• Total time = total time in partitioning + total time in recursion

Partitioning

Let P = set of n points in the plane

- Partitioning P into P1, P2, P3, P4 runs in time O(|P|)
- We cannot bound P1, P2, P3, P4 (each can have anywhere between 0 points and n points)
- But if we look at all nodes at same level in the quadtree: together they form a partition of the input square and the union of their points is P
- ==> The time to partition, at every level, is O(n)
- ==> Summed over the entire quadtree partition will take $O(h \times n)$ in total

Let P = set of n points in the plane

- Recursion
 - Every recursive call creates a node
 - How many nodes?

How many nodes?

nodes (N) = internal nodes (I)+ leaves (L)

How many nodes?

nodes (N) = internal nodes (I)+ leaves (L)

- nodes (N) = internal nodes (I)+ leaves (L)
- Each node has 0 or 4 children

- nodes (N) = internal nodes (I)+ leaves (L)
- Each node has 0 or 4 children

- nodes (N) = internal nodes (I)+ leaves (L)
- Each node has 0 or 4 children
- A relation between I and L?

- nodes (N) = internal nodes (I)+ leaves (L)
- Each node has 0 or 4 children
- A relation between I and L?
 L = 3 I + 1
 (Proof: by induction)

How many nodes?

nodes (N) = internal nodes (I)+ leaves (L)

- nodes (N) = internal nodes (I)+ leaves (L)
- L = 3 | + 1 --> N = | + 3| + 1 = 4| + 1

- nodes (N) = internal nodes (I)+ leaves (L)
- L = 3 | + 1 --> N = | + 3| + 1 = 4| + 1
- How many internal nodes?

- nodes (N) = internal nodes (I)+ leaves (L)
- L = 3 I + 1 --> N = I + 3I + 1 = 4I + 1
- How many internal nodes?
 - can be unbounded

- nodes (N) = internal nodes (I)+ leaves (L)
- L = 3 I + 1 --> N = I + 3I + 1 = 4I + 1
- How many internal nodes?
 - can be unbounded
 - want to express function of h

- nodes (N) = internal nodes (I)+ leaves (L)
- L = 3 I + 1 --> N = I + 3I + 1 = 4I + 1
- How many internal nodes?
 - can be unbounded
 - want to express function of h

- nodes (N) = internal nodes (I)+ leaves (L)
- $L = 3 | + 1 \longrightarrow N = | + 3 | + 1 = 4 | + 1$
- How many internal nodes?
 - can be unbounded
 - want to express function of h
 - in the best case each leaf contains one point (no empty leaves); in the worst case there can be many empty leaves ==> many internal nodes

- nodes (N) = internal nodes (I)+ leaves (L)
- $L = 3 | + 1 \longrightarrow N = | + 3 | + 1 = 4 | + 1$
- How many internal nodes?
 - can be unbounded
 - want to express function of h
 - in the best case each leaf contains one point (no empty leaves); in the worst case there can be many empty leaves ==> many internal nodes

- nodes (N) = internal nodes (I)+ leaves (L)
- $L = 3 | + 1 \longrightarrow N = | + 3 | + 1 = 4 | + 1$
- How many internal nodes?
 - can be unbounded
 - want to express function of h
 - in the best case each leaf contains one point (no empty leaves); in the worst case there can be many empty leaves ==> many internal nodes
 - at each level, the internal nodes partition the original square and each internal node contains at least 2 points ==> O(n) internal nodes per level —> O(n × h)

How many nodes?

- nodes (N) = internal nodes (I)+ leaves (L)
- $L = 3 | + 1 \longrightarrow N = | + 3 | + 1 = 4 | + 1$
- How many internal nodes?
 - can be unbounded
 - want to express function of h
 - in the best case each leaf contains one point (no empty leaves); in the worst case there can be many empty leaves ==> many internal nodes
 - at each level, the internal nodes partition the original square and each internal node contains at least 2 points ==> O(n) internal nodes per level —> O(n × h)

O(nxh) nodes

Theorem:

- has height h = O(Ig(1/d)) (where d is closest distance)
- has $O(h \times n)$ nodes; and
- can be built in $O(h \times n)$ time.

Theorem:

- has height h = O(Ig(1/d)) (where d is closest distance)
- has O(h × n) nodes; and
- can be built in O(h x n) time.
- Theoretical worst case:

Theorem:

- has height h = O(lg (1/d)) (where d is closest distance)
- has $O(h \times n)$ nodes; and
- can be built in O(h x n) time.
- Theoretical worst case:
 - height and size are unbounded

Theorem:

- has height h = O(lg (1/d)) (where d is closest distance)
- has $O(h \times n)$ nodes; and
- can be built in O(h x n) time.
- Theoretical worst case:
 - height and size are unbounded
- In practice:

Theorem:

- has height h = O(Ig(1/d)) (where d is closest distance)
- has $O(h \times n)$ nodes; and
- can be built in O(h x n) time.
- Theoretical worst case:
 - height and size are unbounded
- In practice:
 - often h=O(n) ==> size $= O(n^2)$, build time is $O(n^2)$

Theorem:

- has height h = O(lg (1/d)) (where d is closest distance)
- has $O(h \times n)$ nodes; and
- can be built in O(h x n) time.
- Theoretical worst case:
 - height and size are unbounded
- In practice:
 - often h=O(n) ==> size $= O(n^2)$, build time is $O(n^2)$
 - For sets of points that are uniformly distributed, quadtrees have height h = O(lg n), size O(n) and can be built in O(n lg n) time.

Compressed (point) quadtrees

- Draw a quadtree of arbitrarily large size corresponding to a small set of points in the plane (pick n=2 or n=3).
 - How many leaves are empty / non-empty?
 - Why is the size of the quadtree super-linear?
- Compress the quadtree as follows:
 - compress paths of nodes with 3 empty children into one node
 - this node is called a *donut*
 - a node may have 5 children, an empty *donut* + 4 regular quadrants

A compressed quadtree is a regular quadtree where paths of nodes with 3 empty children are compressed into one node (called: donut)

• a node may have 5 children, an empty *donut* + 4 regular quadrants

A compressed quadtree is a regular quadtree where paths of nodes with 3 empty children are compressed into one node (called: donut)

• a node may have 5 children, an empty *donut* + 4 regular quadrants

A compressed quadtree is a regular quadtree where paths of nodes with 3 empty children are compressed into one node (called: donut)

• a node may have 5 children, an empty *donut* + 4 regular quadrants

• What does this mean in terms of size?

A compressed quadtree is a regular quadtree where paths of nodes with 3 empty children are compressed into one node (called: donut)

• a node may have 5 children, an empty *donut* + 4 regular quadrants

• What does this mean in terms of size?

Theorem: A compressed quadtree has O(n) nodes and h=O(n) height.

A compressed quadtree is a regular quadtree where paths of nodes with 3 empty children are compressed into one node (called: donut)

• a node may have 5 children, an empty *donut* + 4 regular quadrants

• What does this mean in terms of size?

Theorem: A compressed quadtree has O(n) nodes and h=O(n) height.

• Can you argue why..?

Applications of quadtrees

Applications of quadtrees

- Hundreds of papers
- Specialized quadtrees
 - customized for specific types of data (images, edges, polygons)
 - customized for specific applications
 - customized for large data
- Used to answer queries on spatial data such as:
 - point location
 - nearest neighbor (NN)
 - k-NNs
 - range searching
 - find all segments intersecting a given segment
 - meshing
 - ...

Given a node v and a direction (N, S, E, W) find a node v' such that region(v') is adjacent to region(v) in the given direction.

Given a node v and a direction (N, S, E, W) find a node v' such that region(v') is adjacent to region(v) in the given direction.

Given a node v and a direction (N, S, E, W) find a node v' such that region(v') is adjacent to region(v) in the given direction.

Given a node v and a direction (N, S, E, W) find a node v' such that region(v') is adjacent to region(v) in the given direction.

Given a node v and a direction (N, S, E, W) find a node v' such that region(v') is adjacent to region(v) in the given direction.

Given a node v and a direction (N, S, E, W) find a node v' such that region(v') is adjacent to region(v) in the given direction.

Given a node v and a direction (N, S, E, W) find a node v' such that region(v') is adjacent to region(v) in the given direction.

Given a node v and a direction (N, S, E, W) find a node v' such that region(v') is adjacent to region(v) in the given direction.

Given a node v and a direction (N, S, E, W) find a node v' such that region(v') is adjacent to region(v) in the given direction.

Given a node v and a direction (N, S, E, W) find a node v' such that region(v') is adjacent to region(v) in the given direction.

Given a node v and a direction (N, S, E, W) find a node v' such that region(v') is adjacent to region(v) in the given direction.

Given a node v and a direction (N, S, E, W) find a node v' such that region(v') is adjacent to region(v) in the given direction.

Given a node v and a direction (N, S, E, W) find a node v' such that region(v') is adjacent to region(v) in the given direction.

Given a node v and a direction (N, S, E, W) find a node v' such that region(v') is adjacent to region(v) in the given direction.

Given a node v and a direction (N, S, E, W) find a node v' such that region(v') is adjacent to region(v) in the given direction.

- try to find a node v' at the same depth as v
- if not possible, find the deepest

- try to find a node v' at the same depth as v
- if not possible, find the deepest

- try to find a node v' at the same depth as v
- if not possible, find the deepest

- try to find a node v' at the same depth as v
- if not possible, find the deepest

- try to find a node v' at the same depth as v
- if not possible, find the deepest

- try to find a node v' at the same depth as v
- if not possible, find the deepest

- try to find a node v' at the same depth as v
- if not possible, find the deepest

Is the North_neighbor always a sibling or an uncle?

- try to find a node v^\prime at the same depth as v
- if not possible, find the deepest

Could be a nephew/niece, but we prefer the sibling..

- try to find a node v' at the same depth as v
- if not possible, find the deepest

Come up with an example where the search for a North_neighbor is a great-uncle

Come up with an example where the North_neighbor is a

- great-uncle.
- great-great-uncle
-

//input: a node v in a quadtree

//output: the deepest node v' whose depth is at most the depth of v such that region(v') is a north-neighbor of region(v), and NULL if there is no such node

North_Neighbor(v)

- if v==root: ...
- if v==SW-child of parent(v):...
- if v==SE-child of parent(v): ...

//if we reached here, v must be NW or NE child

- x <—- North_Neighbor(parent(v))
 - if x is NULL or a leaf:
 - •

.

• else:

//input: a node v in a quadtree

//output: the deepest node v' whose depth is at most the depth of v such that region(v') is a north-neighbor of region(v), and NULL if there is no such node

North_Neighbor(v)

- if v==root: return NULL
- if v==SW-child of parent(v): return NW-child of parent(v)
- if v==SE-child of parent(v): return NE-child of parent(v)

//if we reached here, v must be NW or NE child

- x <—- North_Neighbor(parent(v))
 - if x is NULL or a leaf: return x
 - else:
 - if v ==NW-child of parent(v): return SW-child(x)
 - else: return SE-child(x)

//input: a node v in a quadtree

//output: the deepest node v' whose depth is at most the depth of v such that region(v') is a north-neighbor of region(v), and NULL if there is no such node

North_Neighbor(v)

- if v==root: return NULL
- if v==SW-child of parent(v): return NW-child of parent(v)
- if v==SE-child of parent(v): return NE-child of parent(v)

//if we reached here, v must be NW or NE child

- x <—- North_Neighbor(parent(v))
 - if x is NULL or a leaf: return x
 - else:
 - if v ==NW-child of parent(v): return SW-child(x)

give an example that would trigger

several recursive calls

else: return SE-child(x)

More applications

- Used to answer queries on spatial data such as:
 - point location
 - nearest neighbor (NN)
 - k-NNs
 - range searching
 - find all segments intersecting a given segment
 - meshing
 - . . .

Applications

• Image analysis/compression

Applications

- Used for fast rendering (LOD)
 - Level i in the qdt —> scene at a certain resolution
 - bottom level has full resolution
 - render scene at a resolution dependent on its distance from the viewpoint

Figure 3 LOD selection of quadtree nodes (the frustum culled section is shaded in dark).

Figure 5 Distribution of LOD levels and nodes (different colors represent different layers).