
Algorithms for GIS:

Quadtrees

Quadtree

• A data structure that corresponds to a hierarchical subdivision of the plane
• Start with a square (containing inside input data)

• Divide into 4 equal squares (quadrants)
• Continue subdividing each quadrant recursively
• Subdivide a square until it satisfies a stopping condition, usually that a

quadrant is “small” enough
• for e.g. contains at most 1 point

Quadtrees

Quadtrees

• Conceptually simple data structure

Quadtrees

• Conceptually simple data structure
• Generalizes to d dimensions

Quadtrees

• Conceptually simple data structure
• Generalizes to d dimensions

• d=3: octree

Quadtrees

• Conceptually simple data structure
• Generalizes to d dimensions

• d=3: octree

Quadtrees

• Conceptually simple data structure
• Generalizes to d dimensions

• d=3: octree
• Can be built for many types of data

Quadtrees

• Conceptually simple data structure
• Generalizes to d dimensions

• d=3: octree
• Can be built for many types of data

• points, edges, polygons, images, etc

Quadtrees

• Conceptually simple data structure
• Generalizes to d dimensions

• d=3: octree
• Can be built for many types of data

• points, edges, polygons, images, etc
• Can be used for many different tasks

Quadtrees

• Conceptually simple data structure
• Generalizes to d dimensions

• d=3: octree
• Can be built for many types of data

• points, edges, polygons, images, etc
• Can be used for many different tasks

• search, point location, neighbors, joins, unions, etc

Quadtrees

• Conceptually simple data structure
• Generalizes to d dimensions

• d=3: octree
• Can be built for many types of data

• points, edges, polygons, images, etc
• Can be used for many different tasks

• search, point location, neighbors, joins, unions, etc
• dynamic

Quadtrees

• Conceptually simple data structure
• Generalizes to d dimensions

• d=3: octree
• Can be built for many types of data

• points, edges, polygons, images, etc
• Can be used for many different tasks

• search, point location, neighbors, joins, unions, etc
• dynamic

• Theoretical bounds not great, but widely used in practice

Quadtrees

• Conceptually simple data structure
• Generalizes to d dimensions

• d=3: octree
• Can be built for many types of data

• points, edges, polygons, images, etc
• Can be used for many different tasks

• search, point location, neighbors, joins, unions, etc
• dynamic

• Theoretical bounds not great, but widely used in practice
• LOTS of applications

Quadtrees

• Conceptually simple data structure
• Generalizes to d dimensions

• d=3: octree
• Can be built for many types of data

• points, edges, polygons, images, etc
• Can be used for many different tasks

• search, point location, neighbors, joins, unions, etc
• dynamic

• Theoretical bounds not great, but widely used in practice
• LOTS of applications

• Many variants of quadtrees have been proposed

Quadtrees

• Conceptually simple data structure
• Generalizes to d dimensions

• d=3: octree
• Can be built for many types of data

• points, edges, polygons, images, etc
• Can be used for many different tasks

• search, point location, neighbors, joins, unions, etc
• dynamic

• Theoretical bounds not great, but widely used in practice
• LOTS of applications

• Many variants of quadtrees have been proposed
• Hundreds of papers

Outline

• Point quadtrees

• Extensions and applications

Illustrate the core properties of quadtrees

Point-quadtree

Questions:

1. Size? Height?

2. How to build it and how fast?

3. What can we do with it?

Let P = set of n points in the plane

Problem: Store P in a quadtree such that every square has <= 1 point.

Let P = set of n points in the plane

Let P = set of n points in the plane

Let P = set of n points in the plane

Let P = set of n points in the plane

Let P = set of n points in the plane

Let P = set of n points in the plane

Let P = set of n points in the plane

Let P = set of n points in the plane

Let P = set of n points in the plane

Quadtree: tree corresponding to the subdivision

Let P = set of n points in the plane

Quadtree: tree corresponding to the subdivision

Let P = set of n points in the plane

NW SW NE SE

Quadtree: tree corresponding to the subdivision

Let P = set of n points in the plane

NW SW NE SE

Quadtree: tree corresponding to the subdivision

Let P = set of n points in the plane

NW SW NE SE

Quadtree: tree corresponding to the subdivision

Let P = set of n points in the plane

NW SW NE SE

Quadtree: tree corresponding to the subdivision

Let P = set of n points in the plane

NW SW NE SE

Quadtree: tree corresponding to the subdivision

Let P = set of n points in the plane

NW SW NE SE

Quadtree: tree corresponding to the subdivision

Let P = set of n points in the plane

NW SW NE SE

Quadtree: tree corresponding to the subdivision

Let P = set of n points in the plane

NW SW NE SE

Quadtree: tree corresponding to the subdivision

Let P = set of n points in the plane

NW SW NE SE

Quadtree: tree corresponding to the subdivision

Let P = set of n points in the plane

NW SW NE SE

Quadtree: tree corresponding to the subdivision

Let P = set of n points in the plane

NW SW NE SE

…..

Quadtree: tree corresponding to the subdivision

Exercises

• Pick n=10 points in the plane and draw their quadtree.

• Show a set of (10) points that have a balanced quadtree.

• Show a set of (10) points that have an unbalanced quadtree.

• Draw the quadtree corresponding to a regular grid
• how many nodes does it have?
• how many leaves? height?

• Consider a set of points with a uniform distribution. What can you say about the quadtree ?

• Let’s look at sets of 2 points in the plane.
• Sketch the smallest possible quad tree for two points in the plane.
• Sketch the largest possible quad tree for two points in the plane.
• An upper bound for the height of a quadtree for 2 points ????

Let P = set of n points in the plane

Quadtree size P = set of n points in the plane

Quadtree size P = set of n points in the plane

Theorem:

Quadtree size P = set of n points in the plane

Theorem:

The height of a quadtree storing P is at most lg (s/d) + 3/2 , where s is the
side of the original square and d is the distance between the closest pair of
points in P.

Quadtree size

Proof:
• Each level divides the side of the quadrant into two. After i levels, the side of the quadrant is s/2i

• A quadrant will be split as long as the two closest points will fit inside it.
• In the worst case the closest points will fit diagonally in a quadrant and the “last” split will

happen at depth i such that s sqrt(2)/2i = d…
• The height of the tree is i+1

P = set of n points in the plane

Theorem:

The height of a quadtree storing P is at most lg (s/d) + 3/2 , where s is the
side of the original square and d is the distance between the closest pair of
points in P.

Quadtree size

Proof:
• Each level divides the side of the quadrant into two. After i levels, the side of the quadrant is s/2i

• A quadrant will be split as long as the two closest points will fit inside it.
• In the worst case the closest points will fit diagonally in a quadrant and the “last” split will

happen at depth i such that s sqrt(2)/2i = d…
• The height of the tree is i+1

P = set of n points in the plane

Theorem:

The height of a quadtree storing P is at most lg (s/d) + 3/2 , where s is the
side of the original square and d is the distance between the closest pair of
points in P.

• What does this mean?
• The distance between points can be arbitrarily small, so the height of a

quadtree can be arbitrarily large in the worst case

Building a quadtree Let P = set of n points in the plane

Building a quadtree

• Let’s come up with a (recursive) algorithm to build quadtree of P

Let P = set of n points in the plane

Building a quadtree

• Let’s come up with a (recursive) algorithm to build quadtree of P

//create quadtree of P and return its root

Let P = set of n points in the plane

Building a quadtree

• Let’s come up with a (recursive) algorithm to build quadtree of P

//create quadtree of P and return its root

buildQuadtree(set of points P, square S)

Let P = set of n points in the plane

Building a quadtree Let P = set of n points in the plane

Building a quadtree

//create quadtree of P and return its root

Let P = set of n points in the plane

Building a quadtree

//create quadtree of P and return its root
buildQuadtree(set of points P, square S)

Let P = set of n points in the plane

Building a quadtree

//create quadtree of P and return its root
buildQuadtree(set of points P, square S)

• if P has at most one point:

Let P = set of n points in the plane

Building a quadtree

//create quadtree of P and return its root
buildQuadtree(set of points P, square S)

• if P has at most one point:
• build a leaf node , store P in it, and return

node

Let P = set of n points in the plane

Building a quadtree

//create quadtree of P and return its root
buildQuadtree(set of points P, square S)

• if P has at most one point:
• build a leaf node , store P in it, and return

node
• else

Let P = set of n points in the plane

Building a quadtree

//create quadtree of P and return its root
buildQuadtree(set of points P, square S)

• if P has at most one point:
• build a leaf node , store P in it, and return

node
• else

• partition S into 4 quadrants S1, S2, S3, S4 and
use them to partition P into P1, P2, P3, P4

Let P = set of n points in the plane

Building a quadtree

//create quadtree of P and return its root
buildQuadtree(set of points P, square S)

• if P has at most one point:
• build a leaf node , store P in it, and return

node
• else

• partition S into 4 quadrants S1, S2, S3, S4 and
use them to partition P into P1, P2, P3, P4

• create a node

Let P = set of n points in the plane

Building a quadtree

//create quadtree of P and return its root
buildQuadtree(set of points P, square S)

• if P has at most one point:
• build a leaf node , store P in it, and return

node
• else

• partition S into 4 quadrants S1, S2, S3, S4 and
use them to partition P into P1, P2, P3, P4

• create a node
• node ->child1 = buildQuadtree(P1, S1)

Let P = set of n points in the plane

Building a quadtree

//create quadtree of P and return its root
buildQuadtree(set of points P, square S)

• if P has at most one point:
• build a leaf node , store P in it, and return

node
• else

• partition S into 4 quadrants S1, S2, S3, S4 and
use them to partition P into P1, P2, P3, P4

• create a node
• node ->child1 = buildQuadtree(P1, S1)
• node ->child2 = buildQuadtree(P2, S2)

Let P = set of n points in the plane

Building a quadtree

//create quadtree of P and return its root
buildQuadtree(set of points P, square S)

• if P has at most one point:
• build a leaf node , store P in it, and return

node
• else

• partition S into 4 quadrants S1, S2, S3, S4 and
use them to partition P into P1, P2, P3, P4

• create a node
• node ->child1 = buildQuadtree(P1, S1)
• node ->child2 = buildQuadtree(P2, S2)
• node ->child3 = buildQuadtree(P3, S3)

Let P = set of n points in the plane

Building a quadtree

//create quadtree of P and return its root
buildQuadtree(set of points P, square S)

• if P has at most one point:
• build a leaf node , store P in it, and return

node
• else

• partition S into 4 quadrants S1, S2, S3, S4 and
use them to partition P into P1, P2, P3, P4

• create a node
• node ->child1 = buildQuadtree(P1, S1)
• node ->child2 = buildQuadtree(P2, S2)
• node ->child3 = buildQuadtree(P3, S3)
• node ->child4 = buildQuadtree(P4, S4)

Let P = set of n points in the plane

Building a quadtree

//create quadtree of P and return its root
buildQuadtree(set of points P, square S)

• if P has at most one point:
• build a leaf node , store P in it, and return

node
• else

• partition S into 4 quadrants S1, S2, S3, S4 and
use them to partition P into P1, P2, P3, P4

• create a node
• node ->child1 = buildQuadtree(P1, S1)
• node ->child2 = buildQuadtree(P2, S2)
• node ->child3 = buildQuadtree(P3, S3)
• node ->child4 = buildQuadtree(P4, S4)
• return node

Let P = set of n points in the plane

Building a quadtree

//create quadtree of P and return its root
buildQuadtree(set of points P, square S)

• if P has at most one point:
• build a leaf node , store P in it, and return

node
• else

• partition S into 4 quadrants S1, S2, S3, S4 and
use them to partition P into P1, P2, P3, P4

• create a node
• node ->child1 = buildQuadtree(P1, S1)
• node ->child2 = buildQuadtree(P2, S2)
• node ->child3 = buildQuadtree(P3, S3)
• node ->child4 = buildQuadtree(P4, S4)
• return node

Let P = set of n points in the plane

How long does
this take, function
of n and height h?

• Total time = total time in partitioning + total time in recursion

Building a quadtree

…

P1 P2 P3 P4

P
partition P into P1, P2, P3 P4 takes O(|P|) = O(n)

Let P = set of n points in the plane Partitioning

…

partition P1, P2, P3 P4 into their quadrants takes
O(|P1|) + O(|P2|) + O(|P3|) + O(|P4|) = O(|P|) = O(n)

A quadtree for P of height h

• Partitioning P into P1, P2, P3, P4 runs in time O(|P|)
• We cannot bound P1, P2, P3, P4 (each can have anywhere between 0 points

and n points)
• But if we look at all nodes at same level in the quadtree: together they form a

partition of the input square and the union of their points is P

==> The time to partition, at every level, is O(n)

==> Summed over the entire quadtree partition will take O(h x n) in total

Partitioning Let P = set of n points in the plane

Building a quadtree

• Recursion
• Every recursive call creates a node
• How many nodes?

…

P1 P2 P3 P4

P

Let P = set of n points in the plane

A quadtree for P of height h

Building a quadtree

…

P1 P2 P3 P4

P

How many nodes?

A quadtree for P of height h

Building a quadtree

• nodes (N) = internal nodes (I)+ leaves (L)

…

P1 P2 P3 P4

P

How many nodes?

A quadtree for P of height h

Building a quadtree

• nodes (N) = internal nodes (I)+ leaves (L)

…

P1 P2 P3 P4

P

How many nodes?

A quadtree for P of height h

Building a quadtree

• nodes (N) = internal nodes (I)+ leaves (L)

• Each node has 0 or 4 children

…

P1 P2 P3 P4

P

How many nodes?

A quadtree for P of height h

Building a quadtree

• nodes (N) = internal nodes (I)+ leaves (L)

• Each node has 0 or 4 children

…

P1 P2 P3 P4

P

How many nodes?

A quadtree for P of height h

Building a quadtree

• nodes (N) = internal nodes (I)+ leaves (L)

• Each node has 0 or 4 children

• A relation between I and L?

…

P1 P2 P3 P4

P

How many nodes?

A quadtree for P of height h

Building a quadtree

• nodes (N) = internal nodes (I)+ leaves (L)

• Each node has 0 or 4 children

• A relation between I and L?

L = 3 I + 1

(Proof: by induction)
…

P1 P2 P3 P4

P

A quadtree for P of height h

How many nodes?

Building a quadtree

…

P1 P2 P3 P4

P

A quadtree for P of height h

How many nodes?

Building a quadtree

• nodes (N) = internal nodes (I)+ leaves (L)

…

P1 P2 P3 P4

P

A quadtree for P of height h

How many nodes?

Building a quadtree

• nodes (N) = internal nodes (I)+ leaves (L)
• L = 3 I + 1 —> N = I + 3I + 1 = 4I + 1

…

P1 P2 P3 P4

P

A quadtree for P of height h

How many nodes?

Building a quadtree

• nodes (N) = internal nodes (I)+ leaves (L)
• L = 3 I + 1 —> N = I + 3I + 1 = 4I + 1
• How many internal nodes?

…

P1 P2 P3 P4

P

A quadtree for P of height h

How many nodes?

Building a quadtree

• nodes (N) = internal nodes (I)+ leaves (L)
• L = 3 I + 1 —> N = I + 3I + 1 = 4I + 1
• How many internal nodes?

• can be unbounded

…

P1 P2 P3 P4

P

A quadtree for P of height h

How many nodes?

Building a quadtree

• nodes (N) = internal nodes (I)+ leaves (L)
• L = 3 I + 1 —> N = I + 3I + 1 = 4I + 1
• How many internal nodes?

• can be unbounded
• want to express function of h

…

P1 P2 P3 P4

P

A quadtree for P of height h

How many nodes?

Building a quadtree

• nodes (N) = internal nodes (I)+ leaves (L)
• L = 3 I + 1 —> N = I + 3I + 1 = 4I + 1
• How many internal nodes?

• can be unbounded
• want to express function of h

…

P1 P2 P3 P4

P

A quadtree for P of height h

How many nodes?

Building a quadtree

• nodes (N) = internal nodes (I)+ leaves (L)
• L = 3 I + 1 —> N = I + 3I + 1 = 4I + 1
• How many internal nodes?

• can be unbounded
• want to express function of h

• in the best case each leaf contains one point (no
empty leaves); in the worst case there can be
many empty leaves ==> many internal nodes

…

P1 P2 P3 P4

P

A quadtree for P of height h

How many nodes?

Building a quadtree

• nodes (N) = internal nodes (I)+ leaves (L)
• L = 3 I + 1 —> N = I + 3I + 1 = 4I + 1
• How many internal nodes?

• can be unbounded
• want to express function of h

• in the best case each leaf contains one point (no
empty leaves); in the worst case there can be
many empty leaves ==> many internal nodes

…

P1 P2 P3 P4

P

A quadtree for P of height h

How many nodes?

Building a quadtree

• nodes (N) = internal nodes (I)+ leaves (L)
• L = 3 I + 1 —> N = I + 3I + 1 = 4I + 1
• How many internal nodes?

• can be unbounded
• want to express function of h

• in the best case each leaf contains one point (no
empty leaves); in the worst case there can be
many empty leaves ==> many internal nodes

• at each level, the internal nodes partition the
original square and each internal node contains
at least 2 points ==> O(n) internal nodes per
level —> O(n x h)

…

P1 P2 P3 P4

P

A quadtree for P of height h

How many nodes?

Building a quadtree

• nodes (N) = internal nodes (I)+ leaves (L)
• L = 3 I + 1 —> N = I + 3I + 1 = 4I + 1
• How many internal nodes?

• can be unbounded
• want to express function of h

• in the best case each leaf contains one point (no
empty leaves); in the worst case there can be
many empty leaves ==> many internal nodes

• at each level, the internal nodes partition the
original square and each internal node contains
at least 2 points ==> O(n) internal nodes per
level —> O(n x h)

…

P1 P2 P3 P4

P

A quadtree for P of height h

How many nodes?

O(n x h) nodes

Summary

Theorem:
A quadtree for a set P of points in the plane:

• has height h = O(lg (1/d)) (where d is closest distance)
• has O(h x n) nodes; and
• can be built in O(h x n) time.

Summary

Theorem:
A quadtree for a set P of points in the plane:

• has height h = O(lg (1/d)) (where d is closest distance)
• has O(h x n) nodes; and
• can be built in O(h x n) time.

• Theoretical worst case:

Summary

Theorem:
A quadtree for a set P of points in the plane:

• has height h = O(lg (1/d)) (where d is closest distance)
• has O(h x n) nodes; and
• can be built in O(h x n) time.

• Theoretical worst case:
• height and size are unbounded

Summary

Theorem:
A quadtree for a set P of points in the plane:

• has height h = O(lg (1/d)) (where d is closest distance)
• has O(h x n) nodes; and
• can be built in O(h x n) time.

• Theoretical worst case:
• height and size are unbounded

• In practice:

Summary

Theorem:
A quadtree for a set P of points in the plane:

• has height h = O(lg (1/d)) (where d is closest distance)
• has O(h x n) nodes; and
• can be built in O(h x n) time.

• Theoretical worst case:
• height and size are unbounded

• In practice:
• often h=O(n) ==> size = O(n2), build time is O(n2)

Summary

Theorem:
A quadtree for a set P of points in the plane:

• has height h = O(lg (1/d)) (where d is closest distance)
• has O(h x n) nodes; and
• can be built in O(h x n) time.

• Theoretical worst case:
• height and size are unbounded

• In practice:
• often h=O(n) ==> size = O(n2), build time is O(n2)
• For sets of points that are uniformly distributed, quadtrees have height

h = O(lg n), size O(n) and can be built in O(n lg n) time.

Compressed (point) quadtrees

Exercise Let P = set of n points in the plane

• Draw a quadtree of arbitrarily large size corresponding to a small set of
points in the plane (pick n=2 or n=3).

• How many leaves are empty / non-empty?
• Why is the size of the quadtree super-linear?

• Compress the quadtree as follows:
• compress paths of nodes with 3 empty children into one node
• this node is called a donut
• a node may have 5 children, an empty donut + 4 regular quadrants

Compressed quadtrees Let P = set of n points in the plane

A compressed quadtree is a regular quadtree where paths of nodes with 3
empty children are compressed into one node (called: donut)

• a node may have 5 children, an empty donut + 4 regular quadrants

Compressed quadtrees Let P = set of n points in the plane

A compressed quadtree is a regular quadtree where paths of nodes with 3
empty children are compressed into one node (called: donut)

• a node may have 5 children, an empty donut + 4 regular quadrants

Compressed quadtrees Let P = set of n points in the plane

A compressed quadtree is a regular quadtree where paths of nodes with 3
empty children are compressed into one node (called: donut)

• a node may have 5 children, an empty donut + 4 regular quadrants

• What does this mean in terms of size?

Compressed quadtrees Let P = set of n points in the plane

A compressed quadtree is a regular quadtree where paths of nodes with 3
empty children are compressed into one node (called: donut)

• a node may have 5 children, an empty donut + 4 regular quadrants

• What does this mean in terms of size?

Theorem: A compressed quadtree has O(n) nodes and h=O(n) height.

Compressed quadtrees Let P = set of n points in the plane

A compressed quadtree is a regular quadtree where paths of nodes with 3
empty children are compressed into one node (called: donut)

• a node may have 5 children, an empty donut + 4 regular quadrants

• What does this mean in terms of size?

Theorem: A compressed quadtree has O(n) nodes and h=O(n) height.

• Can you argue why..?

Applications of quadtrees

Applications of quadtrees

• Hundreds of papers
• Specialized quadtrees

• customized for specific types of data (images, edges, polygons)
• customized for specific applications
• customized for large data

• Used to answer queries on spatial data such as:
• point location
• nearest neighbor (NN)
• k-NNs
• range searching
• find all segments intersecting a given segment
• meshing
• …

Example: Neighbor finding

Given a node v and a direction (N, S, E, W) find a node v’ such that region(v’) is
adjacent to region(v) in the given direction.

• two regions (squares) are adjacent iff they share an edge

NORTH_Neighbor=?

Example: Neighbor finding

Given a node v and a direction (N, S, E, W) find a node v’ such that region(v’) is
adjacent to region(v) in the given direction.

• two regions (squares) are adjacent iff they share an edge

NORTH_Neighbor=

Example: Neighbor finding

Given a node v and a direction (N, S, E, W) find a node v’ such that region(v’) is
adjacent to region(v) in the given direction.

• two regions (squares) are adjacent iff they share an edge

NORTH_Neighbor=?

Example: Neighbor finding

Given a node v and a direction (N, S, E, W) find a node v’ such that region(v’) is
adjacent to region(v) in the given direction.

• two regions (squares) are adjacent iff they share an edge

NORTH_Neighbor=?

Example: Neighbor finding

Given a node v and a direction (N, S, E, W) find a node v’ such that region(v’) is
adjacent to region(v) in the given direction.

• two regions (squares) are adjacent iff they share an edge

NORTH_Neighbor=?

Example: Neighbor finding

Given a node v and a direction (N, S, E, W) find a node v’ such that region(v’) is
adjacent to region(v) in the given direction.

• two regions (squares) are adjacent iff they share an edge

NORTH_Neighbor=

Example: Neighbor finding

Given a node v and a direction (N, S, E, W) find a node v’ such that region(v’) is
adjacent to region(v) in the given direction.

• two regions (squares) are adjacent iff they share an edge

NORTH_Neighbor=

Example: Neighbor finding

Given a node v and a direction (N, S, E, W) find a node v’ such that region(v’) is
adjacent to region(v) in the given direction.

• two regions (squares) are adjacent iff they share an edge

neighbor of the parent

NORTH_Neighbor=?

Example: Neighbor finding

Given a node v and a direction (N, S, E, W) find a node v’ such that region(v’) is
adjacent to region(v) in the given direction.

• two regions (squares) are adjacent iff they share an edge

NORTH_Neighbor=NULL

Example: Neighbor finding

Given a node v and a direction (N, S, E, W) find a node v’ such that region(v’) is
adjacent to region(v) in the given direction.

• two regions (squares) are adjacent iff they share an edge

NORTH_Neighbor=?

Example: Neighbor finding

Given a node v and a direction (N, S, E, W) find a node v’ such that region(v’) is
adjacent to region(v) in the given direction.

• two regions (squares) are adjacent iff they share an edge

NORTH_Neighbor=

Example: Neighbor finding

Given a node v and a direction (N, S, E, W) find a node v’ such that region(v’) is
adjacent to region(v) in the given direction.

• two regions (squares) are adjacent iff they share an edge

NORTH_Neighbor=?

Example: Neighbor finding

Given a node v and a direction (N, S, E, W) find a node v’ such that region(v’) is
adjacent to region(v) in the given direction.

• two regions (squares) are adjacent iff they share an edge

NORTH_Neighbor=?

Example: Neighbor finding

Given a node v and a direction (N, S, E, W) find a node v’ such that region(v’) is
adjacent to region(v) in the given direction.

• two regions (squares) are adjacent iff they share an edge

NORTH_Neighbor=?

Example: Neighbor finding

Given a node v and a direction (N, S, E, W) find a node v’ such that region(v’) is
adjacent to region(v) in the given direction.

• two regions (squares) are adjacent iff they share an edge

• try to find a node v’ at the same
depth as v

• if not possible, find the deepest

• try to find a node v’ at the same depth as v
• if not possible, find the deepest

NW SW NE SE

…..
NORTH_Neighbor=?

Visualizing it on the tree..

• try to find a node v’ at the same depth as v
• if not possible, find the deepest

NW SW NE SE

…..
NORTH_Neighbor=?

Visualizing it on the tree..

• try to find a node v’ at the same depth as v
• if not possible, find the deepest

NW SW NE SE

…..
NORTH_Neighbor=?

Visualizing it on the tree..

• try to find a node v’ at the same depth as v
• if not possible, find the deepest

NW SW NE SE

…..
NORTH_Neighbor=?

Visualizing it on the tree..

• try to find a node v’ at the same depth as v
• if not possible, find the deepest

NW SW NE SE

…..
NORTH_Neighbor=?

Visualizing it on the tree..

• try to find a node v’ at the same depth as v
• if not possible, find the deepest

NW SW NE SE

…..
NORTH_Neighbor=?

Visualizing it on the tree..

• try to find a node v’ at the same depth as v
• if not possible, find the deepest

NW SW NE SE

…..
NORTH_Neighbor=?

Visualizing it on the tree..

Is the North_neighbor always a sibling or an uncle?

NW SW NE SE

….. …..

Visualizing it on the tree..

• try to find a node v’ at the same depth as v
• if not possible, find the deepest Could be a nephew/niece, but we prefer the sibling..

• try to find a node v’ at the same depth as v
• if not possible, find the deepest

NW SW NE SE

…..
NORTH_Neighbor=?

Visualizing it on the tree..

Come up with an example where the search for a
North_neighbor
is a great-uncle

Come up with an example where the North_neighbor is a

• great-uncle.

• great-great-uncle
• …

Example: Neighbor finding

NW SW NE SE

NW SW NE SE

NW SW NE SE

//input: a node v in a quadtree

//output: the deepest node v’ whose depth is at most the depth of v such that
region(v’) is a north-neighbor of region(v), and NULL if there is no such node

North_Neighbor(v)
• if v==root: …
• if v==SW-child of parent(v):…
• if v==SE-child of parent(v): …

 //if we reached here, v must be NW or NE child
• x <—- North_Neighbor(parent(v))

• if x is NULL or a leaf:
• .…

• else:
• …..

Example: Neighbor finding

//input: a node v in a quadtree

//output: the deepest node v’ whose depth is at most the depth of v such that
region(v’) is a north-neighbor of region(v), and NULL if there is no such node

North_Neighbor(v)
• if v==root: return NULL
• if v==SW-child of parent(v): return NW-child of parent(v)
• if v==SE-child of parent(v): return NE-child of parent(v)

 //if we reached here, v must be NW or NE child
• x <—- North_Neighbor(parent(v))

• if x is NULL or a leaf: return x
• else:

• if v ==NW-child of parent(v): return SW-child(x)
• else: return SE-child(x)

Example: Neighbor finding

//input: a node v in a quadtree

//output: the deepest node v’ whose depth is at most the depth of v such that
region(v’) is a north-neighbor of region(v), and NULL if there is no such node

North_Neighbor(v)
• if v==root: return NULL
• if v==SW-child of parent(v): return NW-child of parent(v)
• if v==SE-child of parent(v): return NE-child of parent(v)

 //if we reached here, v must be NW or NE child
• x <—- North_Neighbor(parent(v))

• if x is NULL or a leaf: return x
• else:

• if v ==NW-child of parent(v): return SW-child(x)
• else: return SE-child(x)

Example: Neighbor finding

give an example that would trigger
 several recursive calls

More applications

• Used to answer queries on spatial data such as:
• point location
• nearest neighbor (NN)
• k-NNs
• range searching
• find all segments intersecting a given segment
• meshing
• …

How would you
do these?

NN=?

NN=?

find all points in this range

find all points in this range

Applications

• Image analysis/compression

Applications

• Used for fast rendering (LOD)
• Level i in the qdt —> scene at a certain resolution
• bottom level has full resolution
• render scene at a resolution dependent on its distance from the viewpoint

