Algorithms for GIS;:

Quadtrees

Quadtree

e A data structure that corresponds to a hierarchical subdivision of the plane
e Start with a square (containing inside input data)

« Divide into 4 equal squares (quadrants)

« (Continue subdividing each quadrant recursively

e Subdivide a square until it satisfies a stopping condition, usually that a
quadrant is “small” enough

e for e.g. contains at most 1 point

e
e

=l
T

R
s

Quadtrees

Quadtrees

 (Conceptually simple data structure

Quadtrees

e (Generalizes to d dimensions

Quadtrees

e d=3: octree

Quadtrees

e d=3: octree

Z

AN

N

Quadtrees

Z

Can be built for many types of data

N

N

Quadtrees

Z

e points, edges, polygons, images, etc

AN

N

Quadtrees

Z

Can be used for many different tasks

N

N

Quadtrees

AN

e search, point location, neighbors, joins, unions, etc

N

Quadtrees

e dynamic

Z

AN

N

Quadtrees

Z

 Theoretical bounds not great, but widely used in practice

N

N

Quadtrees

LOTS of applications

Z

N

N

Quadtrees

AN

 Many variants of quadtrees have been proposed

N

Quadtrees

 Hundreds of papers

Z

AN

N

www.jotschi.de/images/quadtree/quadtree.png

ofP 9 ® o0 G -
o o o
0 r 1] o
ul o ©
o
o o
w©
o~ =
-~ o
o o o
o [= [= 00
n O
o> 09 or o
S
° 1% [o 2 g
o o
o lo o =
= ']
° o
o o0
oo u) o A
O D b o
L
= ° [x]x]
o o e}
o o o
o o| o
00 o o) o [=]
=) o [=]
[u] s o
o o
o Po -~ 0
=) oJ
o o
o
o |o o
o
[u = [=]
:O o cf
=
3 |o o)
o o o %o
o o]

S

www.pling.org.uk/cs/cgvimg/quadtrees.png

quadtrees.

- R ——.
3.bp.blogspot.com/-7m6WQacRMEE/TW82n70i-VI/AAAAAAAAAHB/00CuUQOL_AH4/s400/Screen%2Bshot%2B2011-03-0 &

Screen+shot+20

|l

chrisbrough.com/images/quadtree/terrain-angle-low.png

imaptools.com/tools/images/tt-tiles.gif

electronicimaging.spiedigitallibrary.org/data/Journals/ELECTIM/22287/501504]ei2.]peg

JPg

octree_03

nupwucvoivpo.Nvidia.com/GPUGems2/elementLinks/37

7

A

c....q“ N O Y
TN AT TN, e YA YA
o P e A X

|

vll
=
]
=B
—
-
-
—
»

n

ARG

3
ol

Outline

Copyraghted Materkal

Mark de Berg
Otfried Cheong

Marc van Kreveld
Mark Overmars

 Point quadtrees

S

lllustrate the core properties of quadtrees

Computational
Geometry

Algorithms and Applications
Third Edition

@ Springer

Point-quadtree Let P = set of n points in the plane

Problem: Store P in a quadtree such that every square has <= 1 point.

e — e e

Questions:
1. Size”? Height?
2. How to build it and how fast?

3. What can we do with it?

Let P = set of n points in the plane

Let P = set of n points in the plane

Let P = set of n points in the plane

Let P = set of n points in the plane

Let P = set of n points in the plane

Let P = set of n points in the plane

Let P = set of n points in the plane

Let P = set of n points in the plane

Let P = set of n points in the plane

Quadtree: tree corresponding to the subdivision

Let P = set of n points in the plane

—

Quadtree: tree corresponding to the subdivision

Let P = set of n points in the plane

B

NW W A~ NE ~SE
O

Quadtree: tree corresponding to the subdivision

Let P = set of n points in the plane

N W A~ NE ~SE
O

Quadtree: tree corresponding to the subdivision

Let P = set of n points in the plane

NW NE ~SE
O

Quadtree: tree corresponding to the subdivision

Let P = set of n points in the plane

NW W A~ NE ~SE
O

Quadtree: tree corresponding to the subdivision

Let P = set of n points in the plane

NW W A~ NE ~SE
O

Quadtree: tree corresponding to the subdivision

Let P = set of n points in the plane

B

NW W A~ NE ~SE
O

Quadtree: tree corresponding to the subdivision

Let P = set of n points in the plane

B

NW W %SE
A

Quadtree: tree corresponding to the subdivision

Let P = set of n points in the plane

NW W A~ NE ~SE
O

S

Quadtree: tree corresponding to the subdivision

Let P = set of n points in the plane

] \
NW W - NE

N
' I

Quadtree: tree corresponding to the subdivision

Let P = set of n points in the plane

@ \
NW W - NE

Quadtree: tree corresponding to the subdivision

Let P = set of n points in the plane

@ \
NW W - NE

Quadtree: tree corresponding to the subdivision

Exercises Let P = set of n points in the plane

Pick n=10 points in the plane and draw their quadtree.
* Show a set of (10) points that have a balanced quadtree.
* Show a set of (10) points that have an unbalanced quadtree.
 Draw the quadtree corresponding to a regular grid
 how many nodes does it have?
 how many leaves” height?
* (Consider a set of points with a uniform distribution. What can you say about the quadtree ?
e Let’s look at sets of 2 points in the plane.
e Sketch the smallest possible quad tree for two points in the plane.

» Sketch the largest possible quad tree for two points in the plane.

* An upper bound for the height of a quadtree for 2 points ?777?

Quadtree size

P = set of n points in the plane

Quadtree size P = set of n points in the plane

Theorem:

Quadtree size P = set of n points in the plane

Theorem:

The height of a quadtree storing P is at most g (s/d) + 3/2, where s is the
side of the original square and d is the distance between the closest pair of
points in P.

Quadtree size P = set of n points in the plane

Theorem:

The height of a quadtree storing P is at most g (s/d) + 3/2, where s is the
side of the original square and d is the distance between the closest pair of

points in P.

Proof:
« Each level divides the side of the quadrant into two. After i levels, the side of the quadrant is s/2

A quadrant will be split as long as the two closest points will fit inside it.

* Inthe worst case the closest points will fit diagonally in a quadrant and the “last” split will
happen at depth i such that s sgrt(2)/2' = d...

 The height of the tree is i+1

Quadtree size P = set of n points in the plane

Theorem:

The height of a quadtree storing P is at most g (s/d) + 3/2, where s is the
side of the original square and d is the distance between the closest pair of

points in P.

Proof:
« Each level divides the side of the quadrant into two. After i levels, the side of the quadrant is s/2

A quadrant will be split as long as the two closest points will fit inside it.

* Inthe worst case the closest points will fit diagonally in a quadrant and the “last” split will
happen at depth i such that s sgrt(2)/2' = d...

 The height of the tree is i+1

 \WWhat does this mean?

e The distance between points can be arbitrarily small, so the height of a
quadtree can be arbitrarily large in the worst case

Building a quadtree

Let P = set of n points in the plane

Building a quadtree Let P = set of n points in the plane

e Let's come up with a (recursive) algorithm to build quadtree of P

Building a quadtree Let P = set of n points in the plane

e Let's come up with a (recursive) algorithm to build quadtree of P

Building a quadtree

Let P = set of n points in the plane

Let’s come up with a (recursive) algorithm to build quadtree of P

buildQuadtree(set of points P, square S)

Building a quadtree

Let P = set of n points in the plane

Building a quadtree

Let P = set of n points in the plane

//create quadtree of P and return its root

Building a quadtree

Let P = set of n points in the plane

//create quadtree of P and return its root

buildQuadtree(set of points P, square S)

Building a quadtree

Let P = set of n points in the plane

//create quadtree of P and return its root
buildQuadtree(set of points P, square S)

* |f P has at most one point:

Building a quadtree

Let P = set of n points in the plane

buildQuadtree(set of points P, square S)

* |f P has at most one point:

 Dbuild a leaf node , store P in it, and return

node

Building a quadtree

Let P = set of n points in the plane

buildQuadtree(set of points P, square S)

* |f P has at most one point:

 Dbuild a leaf node , store P in it, and return

node

e glse

Building a quadtree Let P = set of n points in the plane

buildQuadtree(set of points P, square S)
* |f P has at most one point:

 Dbuild a leaf node , store P in it, and return
node

e glse

e partition Sinto 4 quadrants S1, S2, S3, S4 and
use them to partition P into P1, P2, P3, P4

Building a quadtree Let P = set of n points in the plane

buildQuadtree(set of points P, square S)
* |f P has at most one point:

 Dbuild a leaf node , store P in it, and return
node

e glse

e partition Sinto 4 quadrants S1, S2, S3, S4 and
use them to partition P into P1, P2, P3, P4

e create a node

Building a quadtree

Let P = set of n points in the plane

buildQuadtree(set of points P, square S)

* |f P has at most one point:

 Dbuild a leaf node , store P in it, and return

node

e glse

e partition Sinto 4 quadrants S1, S2, S3, S4 and
use them to partition P into P1, P2, P3, P4

e create a node

 node ->child1 = buildQuadtree(P1, S1)

Building a quadtree

Let P = set of n points in the plane

buildQuadtree(set of points P, square S)

* |f P has at most one point:

 build a leaf node , store P in it, and return

node

e glse

e partition Sinto 4 quadrants S1, S2, S3, S4 and
use them to partition P into P1, P2, P3, P4

e create a node

 node ->child1 = buildQuadtree(P1, S1)
 node ->child2 = buildQuadtree(P2, S2)

Building a quadtree

Let P = set of n points in the plane

buildQuadtree(set of points P, square S)

* |f P has at most one point:

 build a leaf node , store P in it, and return

node

e glse

e partition Sinto 4 quadrants S1, S2, S3, S4 and
use them to partition P into P1, P2, P3, P4

e create a node

 node ->child1 = buildQuadtree(P1, S1)
 node ->child2 = buildQuadtree(P2, S2)
 node ->child3 = buildQuadtree(P3, S3)

Building a quadtree Let P = set of n points in the plane

buildQuadtree(set of points P, square S)
* |f P has at most one point:

 build a leaf node , store P in it, and return
node

e glse

e partition Sinto 4 quadrants S1, S2, S3, S4 and
use them to partition P into P1, P2, P3, P4

e create anode

 node ->child1 = buildQuadtree(P1, S1)
 node ->child2 = buildQuadtree(P2, S2)
 node ->child3 = buildQuadtree(P3, S3)
e node ->child4 = buildQuadtree(P4, S4)

Building a quadtree Let P = set of n points in the plane

buildQuadtree(set of points P, square S)
* |f P has at most one point:

 build a leaf node , store P in it, and return
node

e glse

e partition Sinto 4 quadrants S1, S2, S3, S4 and
use them to partition P into P1, P2, P3, P4

e create anode

 node ->child1 = buildQuadtree(P1, S1)
 node ->child2 = buildQuadtree(P2, S2)
 node ->child3 = buildQuadtree(P3, S3)
e node ->child4 = buildQuadtree(P4, S4)

e return node

Building a quadtree Let P = set of n points in the plane

buildQuadtree(set of points P, square S)
* |f P has at most one point:

 build a leaf node , store P in it, and return
node

e glse

How long does
e partition Sinto 4 quadrants S1, S2, S3, S4 and this take, function

use them to partition P into P1, P2, P3, P4 of n and height h?
e create anode
 node ->child1 = buildQuadtree(P1, S1)
 node ->child2 = buildQuadtree(P2, S2)
 node ->child3 = buildQuadtree(P3, S3)
e node ->child4 = buildQuadtree(P4, S4)

e return node

Building a quadtree

« Jotal time = total time in partitioning + total time in recursion

Partitioning Let P = set of n points in the plane

A quadtree for P of height h

P

o h partition P into P+, P, P3 P4 takes O(|P|) = O(n)

P, Po P 54
tition P14, P2, P3 P4into thei drants tak
o oNe e ftlon B PP Pu o e quadiant ekes
OOOO
OOOO |

Partitioning Let P = set of n points in the plane

e Partitioning P into P1, P2, P3, P4 runs in time O(|P|)

« We cannot bound P1, P2, P3, P4 (each can have anywhere between 0 points
and n points)

 Butif we look at all nodes at same level in the quadtree: together they form a
partition of the input square and the union of their points is P

==> The time to partition, at every level, is O(n)

==> Summed over the entire quadtree partition will take O(h x n) in total

Building a quadtree Let P = set of n points in the plane

A quadtree for P of height h * Recursion

 Every recursive call creates a node

P « How many nodes?

Building a quadtree

How many nodes?

A quadtree for P of height h

Building a quadtree

How many nodes?

A quadtree for P of height h nodes (N) = internal nodes (I)+ leaves (L)

Building a quadtree

How many nodes?

A quadtree for P of height h nodes (N) = internal nodes (I)+ leaves (L)

Building a quadtree

How many nodes?

A quadtree for P of height h * nodes (N) = internal nodes (l)+ leaves (L)

P e Each node has 0 or 4 children

Building a quadtree

How many nodes?

A quadtree for P of height h * nodes (N) = internal nodes (l)+ leaves (L)

P e Each node has 0 or 4 children

Building a quadtree

How many nodes?

A quadtree for P of height h * nodes (N) = internal nodes (l)+ leaves (L)

P e Each node has 0 or 4 children

e A relation between | and L?
P P

Building a quadtree

How many nodes?

A quadtree for P of height h * nodes (N) = internal nodes (l)+ leaves (L)

C)P e Each node has 0 or 4 children

A relation between | and L?

P1QP€) P&) 54 L=31+1

(Proof: by induction)
OOOO
O0O0O

Building a quadtree

How many nodes?

A quadtree for P of height h

Building a quadtree

How many nodes?

nodes (N) = internal nodes (l)+ leaves (L)

A quadtree for P of height h

Building a quadtree

How many nodes?

nodes (N) = internal nodes (l)+ leaves (L)
L=31l+1—>N=I[1+3l+1=4]+1

A quadtree for P of height h

Building a quadtree

How many nodes?

nodes (N) = internal nodes (l)+ leaves (L)
L=31l+1—>N=I[1+3l+1=4]+1

A quadtree for P of height h

P « How many internal nodes?

Building a quadtree

How many nodes?

* nodes (N) = internal nodes (I)+ leaves (L)
L=31l+1—>N=I[1+3l+1=4]+1

A quadtree for P of height h

P « How many internal nodes?

* can be unbounded

Building a quadtree

How many nodes?

* nodes (N) = internal nodes (I)+ leaves (L)
L=31l+1—>N=I[1+3l+1=4]+1

A quadtree for P of height h

P « How many internal nodes?
* can be unbounded

* want to express function of h

Building a quadtree

How many nodes?

* nodes (N) = internal nodes (I)+ leaves (L)
L=31l+1—>N=I[1+3l+1=4]+1

A quadtree for P of height h

P « How many internal nodes?
* can be unbounded

* want to express function of h

Building a quadtree

How many nodes?

* nodes (N) = internal nodes (I)+ leaves (L)
e L=3l+1—>N=I[1+3l+1=41+1

A quadtree for P of height h

P « How many internal nodes?

O * can be unbounded

* want to express function of h

P1 P P 4
O * inthe best case each leaf contains one point (no

empty leaves); in the worst case there can be
many empty leaves ==> many internal nodes
0000
O0O0OO

Building a quadtree

How many nodes?

* nodes (N) = internal nodes (I)+ leaves (L)
e L=3l+1—>N=I[1+3l+1=41+1

A quadtree for P of height h

P « How many internal nodes?

O * can be unbounded

* want to express function of h

P1 P P 4
O * inthe best case each leaf contains one point (no

empty leaves); in the worst case there can be
many empty leaves ==> many internal nodes
0000
O0O0OO

Building a quadtree

A quadtree for P of height h

»
)

P Py P
B S O

AOOO
OO0

How many nodes?

* nodes (N) = internal nodes (I)+ leaves (L)
e L=3I+1—>N=I1+3l+1=41+1
« How many internal nodes?

* can be unbounded

* want to express function of h

* inthe best case each leaf contains one point (no
empty leaves); in the worst case there can be
many empty leaves ==> many internal nodes

* at each level, the internal nodes partition the
original square and each internal node contains
at least 2 points ==> O(n) internal nodes per
level —> O(nx h)

Building a quadtree

A quadtree for P of height h

»
)

P Py P
B S O

AOOO
OO0

How many nodes?

nodes (N) = internal nodes (I)+ leaves (L)
L=3l+1—>N=1+3l+1=4] + 1
How many internal nodes?

* can be unbounded

* want to express function of h

* inthe best case each leaf contains one point (no
empty leaves); in the worst case there can be
many empty leaves ==> many internal nodes

* at each level, the internal nodes partition the
original square and each internal node contains
at least 2 points ==> O(n) internal nodes per
level —> O(nx h)

O(nx h) nodes

Summary

Theorem:
A quadtree for a set P of points in the plane:
e has height h = O(Ig (1/d)) (where d is closest distance)
 has O(h xn) nodes; and

e can be builtin O(h xn) time.

Summary

Theorem:
A quadtree for a set P of points in the plane:
e has height h = O(Ig (1/d)) (where d is closest distance)
 has O(h xn) nodes; and

e can be builtin O(h xn) time.

e T[heoretical worst case:

Summary

Theorem:
A quadtree for a set P of points in the plane:
e has height h = O(Ig (1/d)) (where d is closest distance)
 has O(h xn) nodes; and

e can be builtin O(h xn) time.

e Theoretical worst case:

* height and size are unbounded

Summary

Theorem:
A quadtree for a set P of points in the plane:
e has height h = O(Ig (1/d)) (where d is closest distance)
 has O(h xn) nodes; and

e can be builtin O(h xn) time.

* Theoretical worst case:
* height and size are unbounded

 |n practice:

Summary

Theorem:
A quadtree for a set P of points in the plane:

e has height h = O(Ig (1/d)) (where d is closest distance)
 has O(h xn) nodes; and

e can be builtin O(h xn) time.

e Theoretical worst case:

* height and size are unbounded

 |n practice:

often h=0(n) ==> size = O(n2), build time is O(n?)

Summary

Theorem:
A quadtree for a set P of points in the plane:
e has height h = O(Ig (1/d)) (where d is closest distance)
 has O(h xn) nodes; and

e can be builtin O(h xn) time.

* Theoretical worst case:
* height and size are unbounded
 |n practice:
e often h=0(n) ==> size = O(n2), build time is O(n?)

e [For sets of points that are uniformly distributed, quadtrees have height
h = O(lg n), size O(n) and can be built in O(n Ig n) time.

Compressed (point) quadtrees

Exercise Let P = set of n points in the plane

 Draw a quadtree of arbitrarily large size corresponding to a small set of
points in the plane (pick n=2 or n=3).

 How many leaves are empty / non-empty?

 Why is the size of the quadtree super-linear?

 (Compress the quadtree as follows:
e compress paths of nodes with 3 empty children into one node
* this node is called a donut

e anode may have 5 children, an empty donut + 4 regular quadrants

Compressed quadtrees

Let P = set of n points in the plane

A compressed quadtree is a regular guadtree where paths of nodes with 3
empty children are compressed into one node (called: donut)

a node may have 5 children, an empty donut + 4 regular quadrants

T9]

Number of nodes in a regular
quadtree can be large.

Compressed quad’[rees Let P = set of n points in the plane

A compressed quadtree is a regular guadtree where paths of nodes with 3
empty children are compressed into one node (called: donut)

* anode may have 5 children, an empty donut + 4 regular quadrants

Compressed quad’[rees Let P = set of n points in the plane

A compressed quadtree is a regular guadtree where paths of nodes with 3
empty children are compressed into one node (called: donut)

* anode may have 5 children, an empty donut + 4 regular quadrants

e What does this mean in terms of size”?

Compressed quad’[rees Let P = set of n points in the plane

A compressed quadtree is a regular guadtree where paths of nodes with 3
empty children are compressed into one node (called: donut)

* anode may have 5 children, an empty donut + 4 regular quadrants

e What does this mean in terms of size”?

Theorem: A compressed quadtree has O(n) nodes and h=0(n) height.

Compressed quad’[rees Let P = set of n points in the plane

A compressed quadtree is a regular guadtree where paths of nodes with 3
empty children are compressed into one node (called: donut)

* anode may have 5 children, an empty donut + 4 regular quadrants

e What does this mean in terms of size”?

Theorem: A compressed quadtree has O(n) nodes and h=0(n) height.

 (Can you argue why..?

Applications of quadtrees

Applications of quadtrees

 Hundreds of papers
e Specialized quadtrees
e customized for specific types of data (images, edges, polygons)
e customized for specific applications
e customized for large data
e Used to answer queries on spatial data such as:
e point location
* nearest neighbor (NN)
 k-NNs
e range searching
e find all segments intersecting a given segment

e meshing

Example: Neighbor finding

Given a node v and a direction (N, S, E, W) find a node v’ such that region(v’) is
adjacent to region(v) in the given direction.

e two regions (squares) are adjacent iff they share an edge

Example: Neighbor finding

Given a node v and a direction (N, S, E, W) find a node v’ such that region(v’) is
adjacent to region(v) in the given direction.

e two regions (squares) are adjacent iff they share an edge

.o | AN

NORTH_Neighbor=?

Example: Neighbor finding

Given a node v and a direction (N, S, E, W) find a node v’ such that region(v’) is
adjacent to region(v) in the given direction.

e two regions (squares) are adjacent iff they share an edge

_ ‘

| N
.o | AN

NORTH_Neighbor= |8

Example: Neighbor finding

Given a node v and a direction (N, S, E, W) find a node v’ such that region(v’) is
adjacent to region(v) in the given direction.

e two regions (squares) are adjacent iff they share an edge

S AN

NORTH_Neighbor=?

Example: Neighbor finding

Given a node v and a direction (N, S, E, W) find a node v’ such that region(v’) is
adjacent to region(v) in the given direction.

e two regions (squares) are adjacent iff they share an edge

m . ’

S AN

NORTH_Neighbor={i

Example: Neighbor finding

Given a node v and a direction (N, S, E, W) find a node v’ such that region(v’) is
adjacent to region(v) in the given direction.

e two regions (squares) are adjacent iff they share an edge

’ AN
e | \

NORTH_Neighbor=?

Example: Neighbor finding

Given a node v and a direction (N, S, E, W) find a node v’ such that region(v’) is
adjacent to region(v) in the given direction.

e two regions (squares) are adjacent iff they share an edge

: L.\ \?
e | \

NORTH_Neighbor=

Example: Neighbor finding

Given a node v and a direction (N, S, E, W) find a node v’ such that region(v’) is
adjacent to region(v) in the given direction.

e two regions (squares) are adjacent iff they share an edge

—

neighbor of the parent

’ AN
e | \

NORTH_Neighbor=

Example: Neighbor finding

Given a node v and a direction (N, S, E, W) find a node v’ such that region(v’) is
adjacent to region(v) in the given direction.

e two regions (squares) are adjacent iff they share an edge

DN
' N\

NORTH_Neighbor=?

Example: Neighbor finding

Given a node v and a direction (N, S, E, W) find a node v’ such that region(v’) is
adjacent to region(v) in the given direction.

e two regions (squares) are adjacent iff they share an edge

DN
' N\

NORTH_Neighbor=NULL

Example: Neighbor finding

Given a node v and a direction (N, S, E, W) find a node v’ such that region(v’) is
adjacent to region(v) in the given direction.

e two regions (squares) are adjacent iff they share an edge

T~
NORTH_Neighbor="?

Example: Neighbor finding

Given a node v and a direction (N, S, E, W) find a node v’ such that region(v’) is
adjacent to region(v) in the given direction.

e two regions (squares) are adjacent iff they share an edge

T~
NORTH_Neighbor= Il

Example: Neighbor finding

Given a node v and a direction (N, S, E, W) find a node v’ such that region(v’) is
adjacent to region(v) in the given direction.

e two regions (squares) are adjacent iff they share an edge

\
NORTH_Neighbor=Il§

Example: Neighbor finding

Given a node v and a direction (N, S, E, W) find a node v’ such that region(v’) is
adjacent to region(v) in the given direction.

e two regions (squares) are adjacent iff they share an edge

\
NORTH_Neighbor:-

Example: Neighbor finding

Given a node v and a direction (N, S, E, W) find a node v’ such that region(v’) is
adjacent to region(v) in the given direction.

e two regions (squares) are adjacent iff they share an edge

B
@ |
@ @ e trytofind a node v’ at the same
depth as v
P e if not possible, find the deepest

\
NORTH_Neighbor:-

Visualizing it on the tree..

@ \
NW W NE

OSE
: ’ é}

N S

e | AN

NORTH_Neighbor="

e try tofind a node v’ at the same depth as v
 if not possible, find the deepest

Visualizing it on the tree..

@ \
NW W NE

| %\\ é/é\

e | AN

NORTH_Neighbor="

e try tofind a node v’ at the same depth as v
 if not possible, find the deepest

Visualizing it on the tree..

@ \
NW W NE

a1 B

Jod
Joo N\

NORTH_Neighbor="

e try tofind a node v’ at the same depth as v
 if not possible, find the deepest

Visualizing it on the tree..

@ \
NW W NE

m .
L o

Je ' AN

NORTH_Neighbor="

e try tofind a node v’ at the same depth as v
 if not possible, find the deepest

Visualizing it on the tree..

@ \
NW W NE

zas g:%

= AN

NORTH_Neighbor="

e try tofind a node v’ at the same depth as v
 if not possible, find the deepest

Visualizing it on the tree..

NW Wk

OSE

na

S

= AN

NORTH_Neighbor="

e try tofind a node v’ at the same depth as v
 if not possible, find the deepest

Visualizing it on the tree..

NW W A~ NE ~SE
O

.

S

= AN

NORTH_Neighbor="

e try tofind a node v’ at the same depth as v

* if not possible, find the deepest s the North_neighbor always a sibling or an uncle?

Visualizing it on the tree..

NW W A~ NE ~SE
O

B / -
? O

| N

e try tofind a node v’ at the same depth as v
* if not possible, find the deepest Could be a nephew/niece, but we prefer the sibling..

Visualizing it on the tree..

NW W A~ NE ~SE
O

S

@
1@ B \
v e
NORTH_Neighbor="
 try to find a node v’ at the same depth as v Come up with an example where the search for a
 if not possible, find the deepest North_neighbor

IS a great-uncle

Example: Neighbor finding

Come up with an example where the North_neighbor is a
e great-uncle.

e Qgreat-great-uncle

NW%VX}S
N
&5

N

AN,
e

NN
ﬁfff

Example: Neighbor finding

/input: a node v in a quadtree

//output: the deepest node v whose depth is at most the depth of v such that
region(Vv’) is a north-neighbor of region(v), and NULL if there is no such node

North_Neighbor(v)
e if v==root: ...
e if v==SW-child of parent(v):...
e |f v==SE-child of parent(v): ...
//if we reached here, v must be NW or NE child
X <— North_Neighbor(parent(v))
 ifxis NULL or a leaf:

e eglse:

Example: Neighbor finding

/input: a node v in a quadtree

/Joutput: the deepest node v’ whose depth is at most the depth of v such that
region(Vv’) is a north-neighbor of region(v), and NULL if there is no such node

North_Neighbor(v)

e if v==root: return NULL
e if v==SW-child of parent(v): return NW-child of parent(v)
e if v==SE-child of parent(v): return NE-child of parent(v)
//if we reached here, v must be NW or NE child
X <— North_Neighbor(parent(v))

e ifxis NULL or a leaf: return x

¢ glse:

e if v ==NW-child of parent(v): return SW-child(x)

e else: return SE-child(x)

Example: Neighbor finding

/input: a node v in a quadtree

/Joutput: the deepest node v’ whose depth is at most the depth of v such that
region(Vv’) is a north-neighbor of region(v), and NULL if there is no such node

North_Neighbor(v)
e if v==root: return NULL
e if v==SW-child of parent(v): return NW-child of parent(v)
e if v==SE-child of parent(v): return NE-child of parent(v)

//if we reached here, v must be NW or NE child

give an example that would trigger

* X <—- North_Neighbor(parent(v)) D several recursive calls

e |f xis NULL or a leaf: return x
e eglse:
e if v ==NW-child of parent(v): return SW-child(x)

e else: return SE-child(x)

More applications

Used to answer queries on spatial data such as:

point location

nearest neighbor (NN)

k-NNs

range searching

find all segments intersecting a given segment

meshing

How would you
do these?

NN

7

_NN=?

find all points in this range

find all points in this range

Applications

* |Image analysis/compression

Applications

e Used for fast rendering (LOD)
« Levellinthe gdt —> scene at a certain resolution

e pbottom level has full resolution

e render scene at a resolution dependent on its distance from the viewpoint

