Algorithms for GIS;:

Quadtrees



Quadtree

e A data structure that corresponds to a hierarchical subdivision of the plane
e Start with a square (containing inside input data)

« Divide into 4 equal squares (quadrants)

« (Continue subdividing each quadrant recursively

e Subdivide a square until it satisfies a stopping condition, usually that a
quadrant is “small” enough

e for e.g. contains at most 1 point
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Quadtrees

 (Conceptually simple data structure



Quadtrees

e (Generalizes to d dimensions



Quadtrees

e d=3: octree



Quadtrees

e d=3: octree
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Quadtrees
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Can be built for many types of data
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Quadtrees
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e points, edges, polygons, images, etc
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Quadtrees
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Can be used for many different tasks
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Quadtrees
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e search, point location, neighbors, joins, unions, etc
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Quadtrees

e dynamic
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Quadtrees
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 Theoretical bounds not great, but widely used in practice
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Quadtrees

LOTS of applications
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Quadtrees
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 Many variants of quadtrees have been proposed
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Quadtrees

 Hundreds of papers
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 Point quadtrees
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lllustrate the core properties of quadtrees
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Third Edition

@ Springer



Point-quadtree Let P = set of n points in the plane

Problem: Store P in a quadtree such that every square has <= 1 point.

e — e e

Questions:
1. Size”? Height?
2. How to build it and how fast?

3. What can we do with it?



Let P = set of n points in the plane
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Let P = set of n points in the plane

Quadtree: tree corresponding to the subdivision
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Quadtree: tree corresponding to the subdivision
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Quadtree: tree corresponding to the subdivision




Let P = set of n points in the plane
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Quadtree: tree corresponding to the subdivision



Let P = set of n points in the plane
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Quadtree: tree corresponding to the subdivision



Let P = set of n points in the plane
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Let P = set of n points in the plane
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Quadtree: tree corresponding to the subdivision



Exercises Let P = set of n points in the plane

Pick n=10 points in the plane and draw their quadtree.
* Show a set of (10) points that have a balanced quadtree.
* Show a set of (10) points that have an unbalanced quadtree.
 Draw the quadtree corresponding to a regular grid
 how many nodes does it have?
 how many leaves” height?
* (Consider a set of points with a uniform distribution. What can you say about the quadtree ?
e Let’s look at sets of 2 points in the plane.
e Sketch the smallest possible quad tree for two points in the plane.

» Sketch the largest possible quad tree for two points in the plane.

* An upper bound for the height of a quadtree for 2 points ?777?



Quadtree size

P = set of n points in the plane




Quadtree size P = set of n points in the plane

Theorem:




Quadtree size P = set of n points in the plane

Theorem:

The height of a quadtree storing P is at most g (s/d) + 3/2, where s is the
side of the original square and d is the distance between the closest pair of
points in P.




Quadtree size P = set of n points in the plane

Theorem:

The height of a quadtree storing P is at most g (s/d) + 3/2, where s is the
side of the original square and d is the distance between the closest pair of

points in P.

Proof:
« Each level divides the side of the quadrant into two. After i levels, the side of the quadrant is s/2

A quadrant will be split as long as the two closest points will fit inside it.

* Inthe worst case the closest points will fit diagonally in a quadrant and the “last” split will
happen at depth i such that s sgrt(2)/2' = d...

 The height of the tree is i+1



Quadtree size P = set of n points in the plane

Theorem:

The height of a quadtree storing P is at most g (s/d) + 3/2, where s is the
side of the original square and d is the distance between the closest pair of

points in P.

Proof:
« Each level divides the side of the quadrant into two. After i levels, the side of the quadrant is s/2

A quadrant will be split as long as the two closest points will fit inside it.

* Inthe worst case the closest points will fit diagonally in a quadrant and the “last” split will
happen at depth i such that s sgrt(2)/2' = d...

 The height of the tree is i+1

 \WWhat does this mean?

e The distance between points can be arbitrarily small, so the height of a
quadtree can be arbitrarily large in the worst case




Building a quadtree
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e Let's come up with a (recursive) algorithm to build quadtree of P
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Building a quadtree

Let P = set of n points in the plane

Let’s come up with a (recursive) algorithm to build quadtree of P

buildQuadtree(set of points P, square S)
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Let P = set of n points in the plane

//create quadtree of P and return its root
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Building a quadtree

Let P = set of n points in the plane

//create quadtree of P and return its root
buildQuadtree(set of points P, square S)

* |f P has at most one point:
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Building a quadtree

Let P = set of n points in the plane

buildQuadtree(set of points P, square S)

* |f P has at most one point:

 Dbuild a leaf node , store P in it, and return

node

e glse




Building a quadtree Let P = set of n points in the plane

buildQuadtree(set of points P, square S)
* |f P has at most one point:

 Dbuild a leaf node , store P in it, and return
node

e glse

e partition Sinto 4 quadrants S1, S2, S3, S4 and
use them to partition P into P1, P2, P3, P4
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Building a quadtree

Let P = set of n points in the plane

buildQuadtree(set of points P, square S)

* |f P has at most one point:

 Dbuild a leaf node , store P in it, and return

node

e glse

e partition Sinto 4 quadrants S1, S2, S3, S4 and
use them to partition P into P1, P2, P3, P4

e create a node

 node ->child1 = buildQuadtree(P1, S1)




Building a quadtree

Let P = set of n points in the plane

buildQuadtree(set of points P, square S)

* |f P has at most one point:

 build a leaf node , store P in it, and return

node

e glse

e partition Sinto 4 quadrants S1, S2, S3, S4 and
use them to partition P into P1, P2, P3, P4

e create a node

 node ->child1 = buildQuadtree(P1, S1)
 node ->child2 = buildQuadtree(P2, S2)




Building a quadtree

Let P = set of n points in the plane

buildQuadtree(set of points P, square S)

* |f P has at most one point:

 build a leaf node , store P in it, and return

node

e glse

e partition Sinto 4 quadrants S1, S2, S3, S4 and
use them to partition P into P1, P2, P3, P4

e create a node

 node ->child1 = buildQuadtree(P1, S1)
 node ->child2 = buildQuadtree(P2, S2)
 node ->child3 = buildQuadtree(P3, S3)




Building a quadtree Let P = set of n points in the plane

buildQuadtree(set of points P, square S)
* |f P has at most one point:

 build a leaf node , store P in it, and return
node

e glse

e partition Sinto 4 quadrants S1, S2, S3, S4 and
use them to partition P into P1, P2, P3, P4

e create anode

 node ->child1 = buildQuadtree(P1, S1)
 node ->child2 = buildQuadtree(P2, S2)
 node ->child3 = buildQuadtree(P3, S3)
e node ->child4 = buildQuadtree(P4, S4)




Building a quadtree Let P = set of n points in the plane

buildQuadtree(set of points P, square S)
* |f P has at most one point:

 build a leaf node , store P in it, and return
node

e glse

e partition Sinto 4 quadrants S1, S2, S3, S4 and
use them to partition P into P1, P2, P3, P4

e create anode

 node ->child1 = buildQuadtree(P1, S1)
 node ->child2 = buildQuadtree(P2, S2)
 node ->child3 = buildQuadtree(P3, S3)
e node ->child4 = buildQuadtree(P4, S4)

e return node




Building a quadtree Let P = set of n points in the plane

buildQuadtree(set of points P, square S)
* |f P has at most one point:

 build a leaf node , store P in it, and return
node

e glse

How long does
e partition Sinto 4 quadrants S1, S2, S3, S4 and this take, function

use them to partition P into P1, P2, P3, P4 of n and height h?
e create anode
 node ->child1 = buildQuadtree(P1, S1)
 node ->child2 = buildQuadtree(P2, S2)
 node ->child3 = buildQuadtree(P3, S3)
e node ->child4 = buildQuadtree(P4, S4)

e return node




Building a quadtree

« Jotal time = total time in partitioning + total time in recursion



Partitioning Let P = set of n points in the plane

A quadtree for P of height h

P

o h partition P into P+, P, P3 P4 takes O(|P|) = O(n)

P, Po P 54
tition P14, P2, P3 P4into thei drants tak
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Partitioning Let P = set of n points in the plane

e Partitioning P into P1, P2, P3, P4 runs in time O(|P|)

« We cannot bound P1, P2, P3, P4 (each can have anywhere between 0 points
and n points)

 Butif we look at all nodes at same level in the quadtree: together they form a
partition of the input square and the union of their points is P

==> The time to partition, at every level, is O(n)

==> Summed over the entire quadtree partition will take O(h x n) in total



Building a quadtree Let P = set of n points in the plane

A quadtree for P of height h * Recursion

 Every recursive call creates a node

P « How many nodes?




Building a quadtree

How many nodes?

A quadtree for P of height h




Building a quadtree

How many nodes?

A quadtree for P of height h nodes (N) = internal nodes (I)+ leaves (L)
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P e Each node has 0 or 4 children
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How many nodes?

A quadtree for P of height h * nodes (N) = internal nodes (l)+ leaves (L)

P e Each node has 0 or 4 children

e A relation between | and L?
P P




Building a quadtree

How many nodes?

A quadtree for P of height h * nodes (N) = internal nodes (l)+ leaves (L)

C)P e Each node has 0 or 4 children

A relation between | and L?

P1QP€) P&) 54 L=31+1

(Proof: by induction)
OOOO
O0O0O




Building a quadtree

How many nodes?

A quadtree for P of height h




Building a quadtree

How many nodes?

nodes (N) = internal nodes (l)+ leaves (L)

A quadtree for P of height h




Building a quadtree

How many nodes?

nodes (N) = internal nodes (l)+ leaves (L)
L=31l+1—>N=I[1+3l+1=4]+1

A quadtree for P of height h
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P « How many internal nodes?




Building a quadtree

How many nodes?

* nodes (N) = internal nodes (I)+ leaves (L)
L=31l+1—>N=I[1+3l+1=4]+1

A quadtree for P of height h

P « How many internal nodes?

* can be unbounded
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A quadtree for P of height h

P « How many internal nodes?
* can be unbounded

* want to express function of h
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Building a quadtree

How many nodes?

* nodes (N) = internal nodes (I)+ leaves (L)
e L=3l+1—>N=I[1+3l+1=41+1

A quadtree for P of height h

P « How many internal nodes?

O * can be unbounded

* want to express function of h

P1 P P 4
O * inthe best case each leaf contains one point (no

empty leaves); in the worst case there can be
many empty leaves ==> many internal nodes
0000
O0O0OO




Building a quadtree

How many nodes?

* nodes (N) = internal nodes (I)+ leaves (L)
e L=3l+1—>N=I[1+3l+1=41+1

A quadtree for P of height h

P « How many internal nodes?

O * can be unbounded

* want to express function of h

P1 P P 4
O * inthe best case each leaf contains one point (no

empty leaves); in the worst case there can be
many empty leaves ==> many internal nodes
0000
O0O0OO




Building a quadtree

A quadtree for P of height h

»
)

P Py P
B S O

AOOO
OO0

How many nodes?

* nodes (N) = internal nodes (I)+ leaves (L)
e L=3I+1—>N=I1+3l+1=41+1
« How many internal nodes?

* can be unbounded

* want to express function of h

* inthe best case each leaf contains one point (no
empty leaves); in the worst case there can be
many empty leaves ==> many internal nodes

* at each level, the internal nodes partition the
original square and each internal node contains
at least 2 points ==> O(n) internal nodes per
level —> O( nx h)



Building a quadtree

A quadtree for P of height h

»
)

P Py P
B S O

AOOO
OO0

How many nodes?

nodes (N) = internal nodes (I)+ leaves (L)
L=3l+1—>N=1+3l+1=4] + 1
How many internal nodes?

* can be unbounded

* want to express function of h

* inthe best case each leaf contains one point (no
empty leaves); in the worst case there can be
many empty leaves ==> many internal nodes

* at each level, the internal nodes partition the
original square and each internal node contains
at least 2 points ==> O(n) internal nodes per
level —> O( nx h)

O( nx h) nodes




Summary

Theorem:
A quadtree for a set P of points in the plane:
e has height h = O(Ig (1/d)) (where d is closest distance)
 has O(h xn) nodes; and

e can be builtin O(h xn) time.
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Summary

Theorem:
A quadtree for a set P of points in the plane:

e has height h = O(Ig (1/d)) (where d is closest distance)
 has O(h xn) nodes; and

e can be builtin O(h xn) time.

e Theoretical worst case:

* height and size are unbounded

 |n practice:

often h=0(n) ==> size = O(n2), build time is O(n?)



Summary

Theorem:
A quadtree for a set P of points in the plane:
e has height h = O(Ig (1/d)) (where d is closest distance)
 has O(h xn) nodes; and

e can be builtin O(h xn) time.

* Theoretical worst case:
* height and size are unbounded
 |n practice:
e often h=0(n) ==> size = O(n2), build time is O(n?)

e [For sets of points that are uniformly distributed, quadtrees have height
h = O(lg n), size O(n) and can be built in O( n Ig n) time.



Compressed (point) quadtrees



Exercise Let P = set of n points in the plane

 Draw a quadtree of arbitrarily large size corresponding to a small set of
points in the plane (pick n=2 or n=3).

 How many leaves are empty / non-empty?

 Why is the size of the quadtree super-linear?

 (Compress the quadtree as follows:
e compress paths of nodes with 3 empty children into one node
* this node is called a donut

e anode may have 5 children, an empty donut + 4 regular quadrants



Compressed quadtrees

Let P = set of n points in the plane

A compressed quadtree is a regular guadtree where paths of nodes with 3
empty children are compressed into one node (called: donut)

a node may have 5 children, an empty donut + 4 regular quadrants

T9]

Number of nodes in a regular
quadtree can be large.
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e What does this mean in terms of size”?
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A compressed quadtree is a regular guadtree where paths of nodes with 3
empty children are compressed into one node (called: donut)

* anode may have 5 children, an empty donut + 4 regular quadrants

e What does this mean in terms of size”?

Theorem: A compressed quadtree has O(n) nodes and h=0(n) height.




Compressed quad’[rees Let P = set of n points in the plane

A compressed quadtree is a regular guadtree where paths of nodes with 3
empty children are compressed into one node (called: donut)

* anode may have 5 children, an empty donut + 4 regular quadrants

e What does this mean in terms of size”?

Theorem: A compressed quadtree has O(n) nodes and h=0(n) height.

 (Can you argue why..?



Applications of quadtrees



Applications of quadtrees

 Hundreds of papers
e Specialized quadtrees
e customized for specific types of data (images, edges, polygons)
e customized for specific applications
e customized for large data
e Used to answer queries on spatial data such as:
e point location
* nearest neighbor (NN)
 k-NNs
e range searching
e find all segments intersecting a given segment

e meshing



Example: Neighbor finding

Given a node v and a direction (N, S, E, W) find a node v’ such that region(v’) is
adjacent to region(v) in the given direction.

e two regions (squares) are adjacent iff they share an edge
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Example: Neighbor finding

Given a node v and a direction (N, S, E, W) find a node v’ such that region(v’) is
adjacent to region(v) in the given direction.

e two regions (squares) are adjacent iff they share an edge
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Example: Neighbor finding
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Example: Neighbor finding

Given a node v and a direction (N, S, E, W) find a node v’ such that region(v’) is
adjacent to region(v) in the given direction.

e two regions (squares) are adjacent iff they share an edge

B
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@ @ e trytofind a node v’ at the same
depth as v
P e if not possible, find the deepest

\
NORTH_Neighbor:-




Visualizing it on the tree..
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e try tofind a node v’ at the same depth as v
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Visualizing it on the tree..
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Visualizing it on the tree..
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Visualizing it on the tree..
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Visualizing it on the tree..
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e try tofind a node v’ at the same depth as v
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Visualizing it on the tree..
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e try tofind a node v’ at the same depth as v

* if not possible, find the deepest s the North_neighbor always a sibling or an uncle?



Visualizing it on the tree..
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e try tofind a node v’ at the same depth as v
* if not possible, find the deepest Could be a nephew/niece, but we prefer the sibling..




Visualizing it on the tree..
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 if not possible, find the deepest North_neighbor

IS a great-uncle



Example: Neighbor finding

Come up with an example where the North_neighbor is a
e great-uncle.

e Qgreat-great-uncle
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Example: Neighbor finding

/input: a node v in a quadtree

//output: the deepest node v whose depth is at most the depth of v such that
region(Vv’) is a north-neighbor of region(v), and NULL if there is no such node

North_Neighbor(v)
e if v==root: ...
e if v==SW-child of parent(v):...
e |f v==SE-child of parent(v): ...
//if we reached here, v must be NW or NE child
X <— North_Neighbor(parent(v))
 ifxis NULL or a leaf:

e eglse:




Example: Neighbor finding

/input: a node v in a quadtree

/Joutput: the deepest node v’ whose depth is at most the depth of v such that
region(Vv’) is a north-neighbor of region(v), and NULL if there is no such node

North_Neighbor(v)

e if v==root: return NULL
e if v==SW-child of parent(v): return NW-child of parent(v)
e if v==SE-child of parent(v): return NE-child of parent(v)
//if we reached here, v must be NW or NE child
X <— North_Neighbor(parent(v))

e ifxis NULL or a leaf: return x

¢ glse:

e if v ==NW-child of parent(v): return SW-child(x)

e else: return SE-child(x)




Example: Neighbor finding

/input: a node v in a quadtree

/Joutput: the deepest node v’ whose depth is at most the depth of v such that
region(Vv’) is a north-neighbor of region(v), and NULL if there is no such node

North_Neighbor(v)
e if v==root: return NULL
e if v==SW-child of parent(v): return NW-child of parent(v)
e if v==SE-child of parent(v): return NE-child of parent(v)

//if we reached here, v must be NW or NE child

give an example that would trigger

* X <—- North_Neighbor(parent(v)) D several recursive calls

e |f xis NULL or a leaf: return x
e eglse:
e if v ==NW-child of parent(v): return SW-child(x)

e else: return SE-child(x)




More applications

Used to answer queries on spatial data such as:

point location

nearest neighbor (NN)

k-NNs

range searching

find all segments intersecting a given segment

meshing

How would you
do these?
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find all points in this range



find all points in this range



Applications

* |Image analysis/compression




Applications

e Used for fast rendering (LOD)
« Levellinthe gdt —> scene at a certain resolution

e pbottom level has full resolution

e render scene at a resolution dependent on its distance from the viewpoint







