Graph basics

(CLRS B.4-B.5, 22.1)

- A graph $G=(V, E)$ consists of a set of vertices V and a set of edges E.
- Vertices are objects, and edges model relationships. E.g: graphs can model a network of people, where edges mean friendships (the friendship graph).
- There are two types of graphs: directed and undirected.
- Directed graph: E is a set of ordered pairs of vertices (u, v) where $u, v \in V$

$$
\begin{aligned}
\mathrm{V}= & \{1,2,3,4,5,6\} \\
\mathrm{E}= & \{(1,2),(2,2),(2,4),(2,5) \\
& (4,1),(4,5),(5,4),(6,3)
\end{aligned}
$$

- Undirected graph: E is a set of unordered pairs of vertices $\{u, v\}$ where $u, v \in V$

$$
\begin{aligned}
& V=\{1,2,3,4,5,6\} \\
& E=\{\{1,2\},\{1,5\},\{2,5\},\{3,6\}\}
\end{aligned}
$$

- Note: Some definitions do not allow self loops (graphs are simpler to work with).
- Often the edges (u, v) in a graph have weights $w(u, v)$, e.g.
- Road networks (distances)
- Cable networks (capacity)

Example

- Graphs appear all over the place in all kinds of applications.

Example: the friendship graph: vertices are people, and edges are friendships. Some relevant questions:

- is it directed or undirected? (if I am your friend, does it mean you are my friend??)
- Are two people friends? How close?
- Am I linked by some chain of friends to a star?
- How close am I to a star?
- Is there a path between any two people in the graph?
- Who has the most friends?
- What is the largest clique?

Terminology

- Edge (u, v) is said to be incident to u and v
- Undirected graph: Degree of vertex is the number of edges incident to it.
- Directed graph: In (out) degree of a vertex is the number of edges entering (leaving) it.
- Paths: A path from u_{1} to u_{2} is a sequence of vertices $<u_{1}=v_{0}, v_{1}, v_{2}, \cdots, v_{k}=u_{2}>$ such that $\left(v_{i}, v_{i+1}\right) \in E$ (or $\left\{v_{i}, v_{i+1}\right\} \in E$). If $v_{0}=v_{k}$ then it is a cycle. The length of a path is the number of edges on it.
- Reachability: if there is a path from u_{1} to u_{2} we write $u_{1} \rightsquigarrow u_{2}$ and we say that u_{2} is reachable from u_{1} (directed and undirected graphs).
- An undirected graph is connected if every pair of vertices are connected by a path
- The connected components are the equivalence classes of the vertices under the "reachability" relation. (All connected pair of vertices are in the same connected component).
- A directed graph is strongly connected if every pair of vertices are reachable from each other
- The strongly connected components are the equivalence classes of the vertices under the "mutual reachability" relation.
- A graph is called a tree if there is a single path between any two vertices in G. It can be shown that a tree is connected, has no cycles, and the number of edges is precisely $|E|=|V|-1$ (actually it can be shown that any two of these properties implies the third one).

Graph Size

We will express algorithm running time (and memory) in terms of $|V|$ and $|E|$, often dropping the \mid 's. Sometimes $|V|=n$ and $|E|=m$.

- the number of edges in a graph can be as liittle as 0 (not a very interesting graph): $|E| \geq 0$
- the largest number of edges in a graph is $|E|=O\left(|V|^{2}\right)$. The exact count depends on whether the graph is directed or not, and if self loops are allowed.
- if $|E| \sim|V|^{2}$ the graph is said to be dense
- if $|E| \sim|V|$ the graph is said to be sparse

Graph representation

A graph can be repreented as adjacency list or matrix.

- Adjacency-list representation: Array of $|V|$ list of edges incident to each vertex.

Examples:

- Note: For undirected graphs, every edge is stored twice.
- If graph is weighted, a weight is stored with each edge.
- How much space is required?
- Adjacency-matrix representation: $|V| \times|V|$ matrix A where

$$
a_{i j}= \begin{cases}1 & \text { if }(i, j) \in E \\ 0 & \text { otherwise }\end{cases}
$$

Examples:

	1	2	3	4	5	
1	0	1	0	0	0	0
2	0	1	0	1	1	0
3	0	0	0	0	0	0
4	1	0	0	0	1	0
5	0	0	0	1	0	0
6	0	0	1	0	0	0

- Note: For undirected graphs, the adjacency matrix is symmetric along the main diagonal ($A^{T}=A$).
- If graph is weighted, weights are stored instead of one's.
- How much space is required?
- Comparison of matrix and list representation:

Adjacency list	Adjacency matrix
$O(\|V\|+\|E\|)$ space	$O\left(\|V\|^{2}\right)$ space
Good if graph sparse $\left(\|E\| \ll\|V\|^{2}\right)$	Good if graph dense $\left(\|E\| \approx\|V\|^{2}\right)$
No quick access to (u, v)	$O(1)$ access to (u, v)

- We will use adjacency list representation unless stated otherwise $(O(|V|+|E|)$ space $)$.
- Interesting: large graphs are sparse.

