
Heaps. Heapsort.
(CLRS 6)

1 Introduction

So far we have discussed tools necessary for analysis of algorithms (growth, summations and recur-
rences) and we have seen a couple of sorting algorithms as case-studies.

Today we discuss a data structure called priority queue, and its implementation with a heap.
The heap will lead us to a different algorithm for sorting, called heapsort.

2 Priority Queue

• A priority queue supports the following operations on a set S of n elements:

– Insert: Insert a new element e in S

– FindMin: Return the minimal element in S

– DeleteMin: Delete the minimal element in S

• Sometimes we are also interested in supporting the following operations:

– Change: Change the key (priority) of an element in S

– Delete: Delete an element from S

• Priority queues have many applications, e.g. in discrete event simulation, graph algorithms

• We can obviously sort using a priority queue:

– Insert all elements using Insert

– Delete all elements in order using FindMin and DeleteMin

3 Priority Queue implementations

3.1 A Priority Queue with an Array or List

• The first implementation that comes to mind is ordered array:

1 3 5 6 7 8 9 11 12 15 17

– FindMin can be performed in O(1) time

1

– DeleteMin and Insert takes O(n) time since we need to expand/compress the array
after inserting or deleting element.

• If the array is unordered all operations take O(n) time.

• We could use double linked sorted list instead of array to avoid the O(n) expansion/compression
cost

– but Insert can still take O(n) time.

3.2 A Priority Queue with a Heap

• The common way of implementing a priority queue is using a heap

• Heap definition:

– Perfectly balanced binary tree

∗ lowest level can be incomplete (but filled from left-to-right)

– For all nodes v we have key(v)≥key(parent(v))

• Note: this is a min-heap; a symmetrical definition is possible, giving a max-heap.

• Example:

2

5 3

9 19 11 4

15 14

• The beauty of heaps is that although they are trees, they can be implemented as arrays. The
elements in the heap are stored level-by-level, left-to-right in the array.

Example:

2 5 3 9 19 11 4 15 14

– the left and right children of node in entry i are in entry 2i and 2i + 1, respectively

– the parent of node in entry i is in entry b i2c

• Properties of heap:

2

– Height Θ(log n)

– For a min-heap: Minimum of S is stored in root (for a max-heap, the maximum element
is stored in the root).

• Operations:

– Insert

∗ Insert element in new leaf in leftmost possible position on lowest level

∗ Repeatedly swap element with element in parent node until heap order is reestab-
lished (this is refered to as up-heapify.
Example: Insertion of 4

191415

41159

34

22

5 3

9 19 11 4

15 14 4

– FindMin

∗ Return root element

– DeleteMin

∗ Delete element in root

∗ Move element from rightmost leaf on lowest level to the root (and delete leaf)

∗ Repeatedly swap element with the smaller of the children elements until heap order
is reestablished (this is refered to as down-heapify or sometimes just Heapify).

Example:
19

4 3

9 5 11 4

15 14

3

4 4

9 5 11 19

15 14

– By default Heapify works on the root node (i = 1). Heapify(i) means it’s called on
node i in the heap. Prior to this call, the left and right children of node i must be heaps.
After Heapify (i) is complete, the tree rooted at node i is a heap.

– Changing the priority of a given node or deleting a given node can be handled similarly
in O(log n) time.

∗ Note: We can delete or update nodes in a heap if we are given their index in the
array. For e.g. we cannot say “delete the node with priority 37” because we cannot
search (efficiently) in a heap! But we can say “delete the node at index 5”.

• Running time: All operations traverse at most one root-leaf path ⇒ O(log n) time.

3

3.3 Heapsort

• Sorting using heap takes Θ(n log n) time.

– n ·O(log n) time to insert all elements (build the heap)

– n ·O(log n) time to output sorted elements

• This is not in place. An in-place sorting algorithm with a heap is possible, and is reffered to
as heapsort.

– Build a max-heap

– Repeatedly, delete the largest element, and put it at the end of the array.

3.4 Building a heap in O(n) time

• Sometimes we would like to build a heap faster than O(n log n)

• By default Heapify works on the root node (i = 1). Heapify(i) means it’s called on node
i in the heap. Prior to this call, the left and right children of node i must be heaps. After
Heapify (i) is complete, the tree rooted at node i is a heap.

– BUILDHEAP (A)

∗ down-heapify all nodes level-by-level, bottom-up (starting at node n/2)

– Correctness:

∗ Induction on height of tree: When doing level i, all trees rooted at level i − 1 are
heaps.

– Analysis:

∗ The leaves are at height 0, the root is at height log n

∗ Cost of down-heapify on a node at height h is h

∗ n elements ⇒≤ dn2 e leaves,, d n
2h
e elements at height h

∗ Total cost:
∑logn

i=1 h · d n
2h
e = Θ(n) ·

∑logn
i=1

h
2h

∗ It can be shown that
∑logn

i=1
h
2h

= O(1) =⇒ the total buildheap cost is Θ(n)

4

