# Heaps. Heapsort.

## 1 Introduction

So far we have discussed tools necessary for analysis of algorithms (growth, summations and recurrences) and we have seen a couple of sorting algorithms as case-studies.

Today we discuss a data structure called *priority queue*, and its implementation with a heap. The heap will lead us to a different algorithm for sorting, called *heapsort*.

## 2 Priority Queue

- A priority queue supports the following operations on a set S of n elements:
  - INSERT: Insert a new element e in S
  - FINDMIN: Return the minimal element in S
  - Delete<br/>Min: Delete the minimal element in  ${\cal S}$
- Sometimes we are also interested in supporting the following operations:
  - CHANGE: Change the key (priority) of an element in S
  - Delete: Delete an element from S
- Priority queues have many applications, e.g. in discrete event simulation, graph algorithms
- We can obviously sort using a priority queue:
  - Insert all elements using INSERT
  - Delete all elements in order using FINDMIN and DELETEMIN

### **3** Priority Queue implementations

#### 3.1 A Priority Queue with an Array or List

• The first implementation that comes to mind is ordered array:

#### 1 3 5 6 7 8 9 11 12 15 17

- FINDMIN can be performed in O(1) time

- DELETEMIN and INSERT takes O(n) time since we need to expand/compress the array after inserting or deleting element.
- If the array is unordered all operations take O(n) time.
- We could use double linked sorted list instead of array to avoid the O(n) expansion/compression cost
  - but INSERT can still take O(n) time.

#### 3.2 A Priority Queue with a Heap

- The common way of implementing a priority queue is using a heap
- Heap definition:
  - Perfectly balanced binary tree
    - \* lowest level can be incomplete (but filled from left-to-right)
  - For all nodes v we have  $key(v) \ge key(parent(v))$
- Note: this is a *min-heap*; a symmetrical definition is possible, giving a *max-heap*.
- Example:



• The beauty of heaps is that although they are trees, they can be implemented as arrays. The elements in the heap are stored level-by-level, left-to-right in the array. Example:



- the left and right children of node in entry i are in entry 2i and 2i + 1, respectively
- the parent of node in entry i is in entry  $\lfloor \frac{i}{2} \rfloor$
- Properties of heap:

- Height  $\Theta(\log n)$
- For a min-heap: Minimum of S is stored in root (for a max-heap, the maximum element is stored in the root).
- Operations:
  - Insert
    - \* Insert element in new leaf in leftmost possible position on lowest level
    - \* Repeatedly swap element with element in parent node until heap order is reestablished (this is referred to as UP-HEAPIFY. Example: Insertion of 4



- FindMin
  - \* Return root element
- DeleteMin
  - \* Delete element in root
  - \* Move element from rightmost leaf on lowest level to the root (and delete leaf)
  - \* Repeatedly swap element with the smaller of the children elements until heap order is reestablished (this is referred to as DOWN-HEAPIFY or sometimes just HEAPIFY).

Example:



- By default HEAPIFY works on the root node (i = 1). HEAPIFY(i) means it's called on node i in the heap. Prior to this call, the left and right children of node i must be heaps. After HEAPIFY (i) is complete, the tree rooted at node i is a heap.
- Changing the priority of a given node or deleting a given node can be handled similarly in  $O(\log n)$  time.
  - \* Note: We can delete or update nodes in a heap if we are given their index in the array. For e.g. we cannot say "delete the node with priority 37" because we cannot search (efficiently) in a heap! But we can say "delete the node at index 5".
- Running time: All operations traverse at most one root-leaf path  $\Rightarrow O(\log n)$  time.

#### 3.3 Heapsort

- Sorting using heap takes  $\Theta(n \log n)$  time.
  - $-n \cdot O(\log n)$  time to insert all elements (build the heap)
  - $-n \cdot O(\log n)$  time to output sorted elements
- This is not in place. An in-place sorting algorithm with a heap is possible, and is reffered to as *heapsort*.
  - Build a max-heap
  - Repeatedly, delete the largest element, and put it at the end of the array.

#### **3.4** Building a heap in O(n) time

- Sometimes we would like to build a heap faster than  $O(n \log n)$
- By default HEAPIFY works on the root node (i = 1). HEAPIFY(i) means it's called on node i in the heap. Prior to this call, the left and right children of node i must be heaps. After HEAPIFY (i) is complete, the tree rooted at node i is a heap.
  - BUILDHEAP (A)
    - \* DOWN-HEAPIFY all nodes level-by-level, bottom-up (starting at node n/2)
  - Correctness:
    - \* Induction on height of tree: When doing level i, all trees rooted at level i 1 are heaps.
  - Analysis:
    - \* The leaves are at height 0, the root is at height  $\log n$
    - \* Cost of DOWN-HEAPIFY on a node at height h is h
    - \* *n* elements  $\Rightarrow \leq \lceil \frac{n}{2} \rceil$  leaves, ...,  $\lceil \frac{n}{2^h} \rceil$  elements at height *h*
    - \* Total cost:  $\sum_{i=1}^{\log n} h \cdot \lceil \frac{n}{2^h} \rceil = \Theta(n) \cdot \sum_{i=1}^{\log n} \frac{h}{2^h}$
    - \* It can be shown that  $\sum_{i=1}^{\log n} \frac{h}{2^h} = O(1) \Longrightarrow$  the total buildheap cost is  $\Theta(n)$