## Graphs III

## Minimum Spanning Trees (MST)

Laura Toma<br>Algorithms (csci2200), Bowdoin College

## Minimum Spanning Tree (MST)

Problem: Given an undirected, weighted, connected graph $G$, compute a spanning tree of minimum weight.
where

- Spanning tree: a subgraph of $G$ that is a tree and contains all vertices of $G$.
- The weight of a tree $T$ is the sum of the weights of its edges:

$$
w(T)=\sum_{(u, v) \in T} w_{u, v}
$$

Note: $G$ needs to be connected to admit a ST. If not, first find its CCs, and then find an MST for each component $\rightarrow$ minimum spanning forest (MSF).

## Minimum Spanning Tree (MST)

Two approaches, both greedy:

## Minimum Spanning Tree (MST)

Two approaches, both greedy:

- Kruskal's algorithm:

Start with an empty tree $T$. Consider the edges in $G$ in increasing order of weight. Add edges to $T$ in order of weight unless doing so would create a cycle.

## Minimum Spanning Tree (MST)

Two approaches, both greedy:

- Kruskal's algorithm:

Start with an empty tree $T$. Consider the edges in $G$ in increasing order of weight. Add edges to $T$ in order of weight unless doing so would create a cycle.

- Prim's algorithm:

Start with an empty tree $T$. Greedily grow $T$ one edge at a time. At each step, add the edge of minimum weight that has exactly one endpoint in $T$.

## Prim's MST algorithm

Idea:

- Start with a tree $T$ containing an arbitrary vertex $r$ and no edges
- Grow $T$ by repeatedly adding minimum-weight edge connecting a vertex in the current $T$ with a vertex not in $T$


## Prim's MST algorithm

Idea:

- Start with a tree $T$ containing an arbitrary vertex $r$ and no edges
- Grow $T$ by repeatedly adding minimum-weight edge connecting a vertex in the current $T$ with a vertex not in $T$

Implementation:

- To find mimimum-weight edge connected to current $T$ we maintain a priority queue on vertices not in $T$.
- The priority of a vertex is the weight of the mimimum-weight edge connecting $v$ to the tree.


## Prim's MST algorithm

- pick arbitrary vertex $r$
- Initialize:

For each $v \in V$, $\operatorname{Insert}(\mathrm{PQ},(\mathrm{v}, \infty))$.
Decrease-Key (PQ, r, 0).

- while PQ not empty do:
- $u=$ Delete-Min(PQ)
- output the edge $(u, v i s i t(u))$ as part of MST
- for each $(u, v) \in E$ do:
- if $v \in P Q$ and $w_{u, v}<k e y(v)$ then $\operatorname{visit}(v)=u$
Decrease-Key (PQ, v, $w_{u v}$ )


## Prim's MST algorithm

- pick arbitrary vertex $r$
- Initialize:

For each $v \in V, \operatorname{Insert}(\mathrm{PQ},(\mathrm{v}, \infty))$.
Decrease-Key (PQ, r, 0).

- while PQ not empty do:
- $u=$ Delete-Min(PQ)
- output the edge $(u, v i s i t(u))$ as part of MST
- for each $(u, v) \in E$ do:
- if $v \in P Q$ and $w_{u, v}<k e y(v)$ then $\operatorname{visit}(v)=u$
Decrease-Key (PQ, v, $w_{u v}$ )

Analysis: $|V|$ Insert, $|V|$ Delete-Min, $|E|$ Decrease-Key

## Prim's MST algorithm

- pick arbitrary vertex $r$
- Initialize:

For each $v \in V$, $\operatorname{Insert}(\mathrm{PQ},(\mathrm{v}, \infty))$.
Decrease-Key (PQ, r, 0).

- while PQ not empty do:
- $u=$ Delete-Min(PQ)
- output the edge $(u, v i s i t(u))$ as part of MST
- for each $(u, v) \in E$ do:
- if $v \in P Q$ and $w_{u, v}<k e y(v)$ then $\operatorname{visit}(v)=u$ Decrease-Key (PQ, v, $w_{u v}$ )

Analysis: $|V|$ Insert, $|V|$ Delete-Min, $|E|$ Decrease-Key $\rightarrow O(E \lg V)$ with a heap

## Kruskal's MST algorithm

Idea:

- Start with $|V|$ trees, each consisting of one vertex and no edges.
- Consider edges in $E$ in increasing order of weight; add an edge if it connects two trees


## Kruskal's MST algorithm

Idea:

- Start with $|V|$ trees, each consisting of one vertex and no edges.
- Consider edges in $E$ in increasing order of weight; add an edge if it connects two trees


## Kruskal's MST algorithm

Idea:

- Start with $|V|$ trees, each consisting of one vertex and no edges.
- Consider edges in $E$ in increasing order of weight; add an edge if it connects two trees

Implementation:

- sort $E$ by weight
- How to decide if an edge $(u, v)$ creates a cycle, or connects two trees?


## Kruskal's MST algorithm

Idea:

- Start with $|V|$ trees, each consisting of one vertex and no edges.
- Consider edges in $E$ in increasing order of weight; add an edge if it connects two trees

Implementation:

- sort $E$ by weight
- How to decide if an edge $(u, v)$ creates a cycle, or connects two trees?
Comes down to checking if vertices $u, v$ are in the same tree, or not.


## Kruskal's MST algorithm

- Initialize: $T$ consists of all vertices, and no edges
- Sort $E$ by weight
- For each edge $(u, v)$ in order do:
- if $u, v$ in the same "tree" (i.e. connected in $T$ ): skip
- else: add edge $(u, v)$ to $T$


## Kruskal's MST algorithm

- Initialize: $T$ consists of all vertices, and no edges
- Sort $E$ by weight
- For each edge $(u, v)$ in order do:
- if $u, v$ in the same "tree" (i.e. connected in $T$ ): skip
- else: add edge $(u, v)$ to $T$

How to check if $u, v$ are in the same CC of $T$ ?

## Kruskal's MST algorithm

How to check if $u, v$ are in the same CC of $T$ ?

## Kruskal's MST algorithm

How to check if $u, v$ are in the same CC of $T$ ?
Ideas:
Could run BFS/DFS on $T$ every time.... too slow. Or...

## Kruskal's MST algorithm

How to check if $u, v$ are in the same CC of $T$ ?
Ideas:
Could run BFS/DFS on $T$ every time.... too slow.
Or...

We need a data structure that supports:

- Make-Set $(v)$ : create set containing $v$
- Union-Set $(u, v)$ : unite set containing $u$ and set containing $v$
- Find-Set $(v)$ : return unique representative for set containing $v$
Called Union-Find data structure


## Kruskal's MST algorithm

- Initialize:
$T$ consists of all vertices, and no edges
For each $v \in V$, Make-Set $(v)$
- Sort $E$ by weight
- For each edge $(u, v)$ in order do:
- if Find-Set $(u) \neq \operatorname{Find}-\operatorname{Set}(v)$ :
add edge $(u, v)$ to $T$
Union-Set $(u, v)$


## Kruskal's MST algorithm

- Initialize:
$T$ consists of all vertices, and no edges
For each $v \in V$, Make-Set $(v)$
- Sort $E$ by weight
- For each edge $(u, v)$ in order do:
- if Find-Set $(u) \neq \operatorname{Find}-\operatorname{Set}(v)$ :
add edge $(u, v)$ to $T$
Union-Set $(u, v)$
Analysis: $E \lg E$ to sort; $|V|$ Make-Set, $2|E|$ Find-Set, $|V|-1$ Union-Set


## A Union-Find structure

- Make-Set $(v)$ : create set containing $v$
- Union-Set $(u, v)$ : unite set containing $u$ and set containing $v$
- Find-Set $(v)$ : return unique representative for set containing $v$


## A Union-Find structure

- Make-Set $(v)$ : create set containing $v$
- Union-Set $(u, v)$ : unite set containing $u$ and set containing $v$
- Find-Set $(v)$ : return unique representative for set containing $v$

Simple solution:

## A Union-Find structure

- Make-Set $(v)$ : create set containing $v$
- Union-Set $(u, v)$ : unite set containing $u$ and set containing $v$
- Find-Set $(v)$ : return unique representative for set containing $v$

Simple solution:
Maintain elements in the same set in a linked list with each element having a pointer to the first element in the list (unique representative)

## A Union-Find structure

- Make-Set $(v)$ : create set containing $v$
- Union-Set $(u, v)$ : unite set containing $u$ and set containing $v$
- Find-Set $(v)$ : return unique representative for set containing $v$

Simple solution:
Maintain elements in the same set in a linked list with each element having a pointer to the first element in the list (unique representative)

Find-Set $(u)$ runs in $O(1)$ time, but Union-Set $(u, v)$ needs $O(|V|)$ time.

## A Union-Find structure

- Make-Set $(v)$ : create set containing $v$
- Union-Set $(u, v)$ : unite set containing $u$ and set containing $v$
- Find-Set $(v)$ : return unique representative for set containing $v$

Simple solution:
Maintain elements in the same set in a linked list with each element having a pointer to the first element in the list (unique representative)

Find-Set $(u)$ runs in $O(1)$ time, but Union-Set $(u, v)$ needs $O(|V|)$ time.
$\Rightarrow$ Kruskal's algorithm runs in $O\left(E \lg V+V^{2}\right)$. Too slow.

## A Union-Find structure

Supports:

- Make-Set $(v)$, Union-Set $(u, v)$, Find-Set $(v)$

Refined solution: Maintain elements in the same set in a linked list with each element having a pointer to the first element in the list (unique representative), and in a union-set, always link the smaller list after the longer list.

## A Union-Find structure

Supports:

- Make-Set $(v)$, Union-Set $(u, v)$, Find-Set $(v)$

Refined solution: Maintain elements in the same set in a linked list with each element having a pointer to the first element in the list (unique representative), and in a union-set, always link the smaller list after the longer list.
Analysis: We'll count the total nb of pointers that are changed in all calls to Union-Set(). Assume we start with $|V|$ sets.

## A Union-Find structure

Supports:

- Make-Set $(v)$, Union-Set $(u, v)$, Find-Set $(v)$

Refined solution: Maintain elements in the same set in a linked list with each element having a pointer to the first element in the list (unique representative), and in a union-set, always link the smaller list after the longer list.
Analysis: We'll count the total nb of pointers that are changed in all calls to Union-Set(). Assume we start with $|V|$ sets. How many times can a pointer of an element change?

## A Union-Find structure

Supports:

- Make-Set $(v)$, Union-Set $(u, v)$, Find-Set $(v)$

Refined solution: Maintain elements in the same set in a linked list with each element having a pointer to the first element in the list (unique representative), and in a union-set, always link the smaller list after the longer list.
Analysis: We'll count the total nb of pointers that are changed in all calls to Union-Set(). Assume we start with $|V|$ sets. How many times can a pointer of an element change? Every time an element changes its pointer, it belongs to a set of at least double the size than what it was before.

## A Union-Find structure

Supports:

- Make-Set $(v)$, Union-Set $(u, v)$, Find-Set $(v)$

Refined solution: Maintain elements in the same set in a linked list with each element having a pointer to the first element in the list (unique representative), and in a union-set, always link the smaller list after the longer list.
Analysis: We'll count the total nb of pointers that are changed in all calls to Union-Set(). Assume we start with $|V|$ sets. How many times can a pointer of an element change? Every time an element changes its pointer, it belongs to a set of at least double the size than what it was before. Thus, the pointer of an element can change at most $\lg V$ times.

## A Union-Find structure

Supports:

- Make-Set $(v)$, Union-Set $(u, v)$, Find-Set $(v)$

Refined solution: Maintain elements in the same set in a linked list with each element having a pointer to the first element in the list (unique representative), and in a union-set, always link the smaller list after the longer list.
Analysis: We'll count the total nb of pointers that are changed in all calls to Union-Set(). Assume we start with $|V|$ sets. How many times can a pointer of an element change? Every time an element changes its pointer, it belongs to a set of at least double the size than what it was before. Thus, the pointer of an element can change at most $\lg V$ times. Overall, $|V|-1$ Union-Set() calls will run in $O(V \lg V)$ time.

## Union-Find structure

Actually, a much better bound for a Union-Find structure can be obtained:

- use rooted trees (instead of lists)
- the representative of the set containing $u$ : the root of the tree that contains $u$
- Find-Set $(u)$ : go up the path from $u$ to its root
- at Union-Set: connect the smaller tree as a child of the larger tree
- at Find-set: link all nodes on the path to the root as children of the root.

Can be shown $|V|$ operations run in $O(V \alpha(V \mid)$ time, which is practically $O(|V|)$ time.

## MST algorithms

## Correctness:

## Theorem

Let $V_{1}, V_{2}$ be a partition of $V$ into two disjoint sets, $V_{1} \cup V_{2}=V$. Consider all edges with one endpoint in $V_{1}$ and another one in $V_{2}$. Then there is a MST that includes the minimum-weight such edge e.

## MST algorithms

## Correctness:

## Theorem

Let $V_{1}, V_{2}$ be a partition of $V$ into two disjoint sets, $V_{1} \cup V_{2}=V$. Consider all edges with one endpoint in $V_{1}$ and another one in $V_{2}$. Then there is a MST that includes the minimum-weight such edge $e$.

## Proof.

Let $T$ be an MST of $G$. Assume by contradiction $T$ does not include $e$, then adding $e$ to $T$ creates a cycle. There must be another edge on this cycle that has one endpoint in $V_{1}$ and one in $V_{2}$. It has weights $\geq e$. Remove it from $T$ and add $e$ instead; this gives a ST of weight $\leq$ than before - contradiction.

## MST algorithms

## Theorem

Let $V_{1}, V_{2}$ be a partition of $V$ into two disjoint sets, $V_{1} \cup V_{2}=V$. Consider all edges with one endpoint in $V_{1}$ and another one in $V_{2}$. Then there is a MST that includes the minimum-weight such edge e.

Correctness:
Argue that Prim's and Kruskal's algorithms are correct by using the theorem, and chosing the partition appropriately.

