Graphs II1

Minimum Spanning Trees (MST)

Laura Toma
Algorithms (csci2200), Bowdoin College

Minimum Spanning Trees (MST) Graphs III



Minimum Spanning Tree (MST)

Problem: Given an undirected, weighted, connected graph
G, compute a spanning tree of minimum weight.

where

e Spanning tree: a subgraph of G that is a tree and
contains all vertices of G.

@ The weight of a tree 1" is the sum of the weights of its

edges:
w(T) = Z Wy p

(u,w)eT

Note: G needs to be connected to admit a ST. If not, first
find its CCs, and then find an MST for each component —
minimum spanning forest (MSF).

Minimum Spanning Trees (MST) Graphs III



Minimum Spanning Tree (MST)

Two approaches, both greedy:

Minimum Spanning Trees (MST) Graphs III



Minimum Spanning Tree (MST)

Two approaches, both greedy:

o Kruskal’s algorithm:
Start with an empty tree T'. Consider the edges in G
in increasing order of weight. Add edges to 1" in order
of weight unless doing so would create a cycle.

Minimum Spanning Trees (MST) Graphs III



Minimum Spanning Tree (MST)

Two approaches, both greedy:

o Kruskal’s algorithm:
Start with an empty tree T'. Consider the edges in G
in increasing order of weight. Add edges to 1" in order
of weight unless doing so would create a cycle.

@ Prim’s algorithm:
Start with an empty tree T'. Greedily grow T one edge
at a time. At each step, add the edge of minimum
weight that has exactly one endpoint in 7.

Minimum Spanning Trees (MST) Graphs III



Prim’s MST algorithm

Idea:

e Start with a tree T' containing an arbitrary vertex r
and no edges

e Grow T by repeatedly adding minimum-weight edge
connecting a vertex in the current 7" with a vertex not
inT

Minimum Spanning Trees (MST) Graphs III



Prim’s MST algorithm

Idea:

e Start with a tree T' containing an arbitrary vertex r
and no edges

e Grow T by repeatedly adding minimum-weight edge
connecting a vertex in the current 7" with a vertex not
inT

Implementation:

e To find mimimum-weight edge connected to current T’
we maintain a priority queue on vertices not in 7.

@ The priority of a vertex is the weight of the
mimimum-weight edge connecting v to the tree.

Minimum Spanning Trees (MST) Graphs III



Prim’s MST algorithm

@ pick arbitrary vertex r

o Initialize:
For each v € V, Insert(PQ, (v,00)).
Decrease-Key(PQ, r, 0).
e while PQ not empty do:
o u = Delete-Min(PQ)
e output the edge (u,visit(u)) as part of MST
o for each (u,v) € E do:

o if v € PQ and w,, < key(v) then
visit(v) = u
Decrease-Key(PQ, v, wyy)

Minimum Spanning Trees (MST) Graphs III



Prim’s MST algorithm

@ pick arbitrary vertex r

o Initialize:
For each v € V, Insert(PQ, (v,00)).
Decrease-Key(PQ, r, 0).
e while PQ not empty do:
o u = Delete-Min(PQ)
e output the edge (u,visit(u)) as part of MST
o for each (u,v) € E do:
o if v € PQ and w,, < key(v) then
visit(v) = u
Decrease-Key(PQ, v, wyy)

Analysis: |V Insert, |V| Delete-Min, |F| Decrease-Key

Minimum Spanning Trees (MST) Graphs III



Prim’s MST algorithm

@ pick arbitrary vertex r

o Initialize:
For each v € V, Insert(PQ, (v,00)).
Decrease-Key(PQ, r, 0).
e while PQ not empty do:
o u = Delete-Min(PQ)

e output the edge (u,visit(u)) as part of MST
o for each (u,v) € E do:

o if v € PQ and w,, < key(v) then
visit(v) = u
Decrease-Key(PQ, v, wyy)

Analysis: |V Insert, |V| Delete-Min, |F| Decrease-Key
— O(ElgV) with a heap

Minimum Spanning Trees (MST) Graphs III



Kruskal’s MST algorithm

Idea:
e Start with |V trees, each consisting of one vertex and
no edges.

@ Consider edges in F in increasing order of weight; add
an edge if it connects two trees

Minimum Spanning Trees (MST) Graphs III



Kruskal’s MST algorithm

Idea:
e Start with |V trees, each consisting of one vertex and
no edges.

@ Consider edges in F in increasing order of weight; add
an edge if it connects two trees

Minimum Spanning Trees (MST) Graphs III



Kruskal’s MST algorithm

Idea:

e Start with |V trees, each consisting of one vertex and
no edges.

@ Consider edges in F in increasing order of weight; add
an edge if it connects two trees

Implementation:
e sort F by weight

e How to decide if an edge (u,v) creates a cycle, or
connects two trees?

Minimum Spanning Trees (MST) Graphs III



Kruskal’s MST algorithm

Idea:
e Start with |V trees, each consisting of one vertex and
no edges.

@ Consider edges in F in increasing order of weight; add
an edge if it connects two trees

Implementation:
e sort F by weight

e How to decide if an edge (u,v) creates a cycle, or
connects two trees?
Comes down to checking if vertices u, v are in the same
tree, or not.

Minimum Spanning Trees (MST) Graphs III



Kruskal’s MST algorithm

e Initialize: T consists of all vertices, and no edges
e Sort E by weight
e For each edge (u,v) in order do:

o if u,v in the same “tree” (i.e. connected in T'): skip
o clse: add edge (u,v) to T’

Minimum Spanning Trees (MST) Graphs III



Kruskal’s MST algorithm

e Initialize: T consists of all vertices, and no edges

e Sort E by weight

e For each edge (u,v) in order do:
o if u,v in the same “tree” (i.e. connected in T'): skip
o else: add edge (u,v) to T

How to check if u,v are in the same CC of T7

Minimum Spanning Trees (MST) Graphs III



Kruskal’s MST algorithm

How to check if u, v are in the same CC of T'?

Minimum Spanning Trees (MST) Graphs III



Kruskal’s MST algorithm

How to check if u, v are in the same CC of T'?
Ideas:

Could run BFS/DFS on T every time.... too slow.
Or...

Minimum Spanning Trees (MST) Graphs III



Kruskal’s MST algorithm

How to check if u, v are in the same CC of T'?
Ideas:

Could run BFS/DFS on T every time.... too slow.
Or...

We need a data structure that supports:
e Make-Set(v): create set containing v

e Union-Set(u,v): unite set containing u and set
containing v

e Find-Set(v): return unique representative for set
containing v

Called Union-Find data structure

Minimum Spanning Trees (MST) Graphs III



Kruskal’s MST algorithm

o Initialize:
T consists of all vertices, and no edges
For each v € V', Make-Set(v)

e Sort F by weight
e For each edge (u,v) in order do:
o if Find-Set(u) # Find-Set(v):
add edge (u,v) to T'
Union-Set (u, v)

Minimum Spanning Trees (MST) Graphs III



Kruskal’s MST algorithm

o Initialize:
T consists of all vertices, and no edges
For each v € V', Make-Set(v)

e Sort F by weight
e For each edge (u,v) in order do:
o if Find-Set(u) # Find-Set(v):
add edge (u,v) to T'
Union-Set (u, v)
Analysis: E'lg E to sort; |V| Make-Set, 2|E| Find-Set,
|V| — 1 Union-Set

Minimum Spanning Trees (MST) Graphs III



A Union-Find structure

e Make-Set(v): create set containing v

e Union-Set(u,v): unite set containing u and set
containing v

e Find-Set(v): return unique representative for set
containing v

Minimum Spanning Trees (MST) Graphs III



A Union-Find structure

e Make-Set(v): create set containing v

e Union-Set(u,v): unite set containing u and set
containing v

e Find-Set(v): return unique representative for set
containing v

Simple solution:

Minimum Spanning Trees (MST) Graphs III



A Union-Find structure

e Make-Set(v): create set containing v

e Union-Set(u,v): unite set containing u and set
containing v

e Find-Set(v): return unique representative for set
containing v

Simple solution:

Maintain elements in the same set in a linked list with each
element having a pointer to the first element in the list
(unique representative)

Minimum Spanning Trees (MST) Graphs III



A Union-Find structure

e Make-Set(v): create set containing v

e Union-Set(u,v): unite set containing u and set
containing v

e Find-Set(v): return unique representative for set
containing v

Simple solution:

Maintain elements in the same set in a linked list with each
element having a pointer to the first element in the list
(unique representative)

Find-Set(u) runs in O(1) time, but Union-Set(u, v) needs
O(|V]) time.

Minimum Spanning Trees (MST) Graphs III



A Union-Find structure

e Make-Set(v): create set containing v

e Union-Set(u,v): unite set containing u and set
containing v

e Find-Set(v): return unique representative for set
containing v

Simple solution:

Maintain elements in the same set in a linked list with each
element having a pointer to the first element in the list
(unique representative)

Find-Set(u) runs in O(1) time, but Union-Set(u, v) needs
O(|V]) time.
= Kruskal’s algorithm runs in O(ElgV + V?). Too slow.

Minimum Spanning Trees (MST) Graphs III



A Union-Find structure

Supports:
e Make-Set(v), Union-Set(u, v), Find-Set(v)

Refined solution: Maintain elements in the same set in a
linked list with each element having a pointer to the first
element in the list (unique representative), and in a
union-set, always link the smaller list after the longer list.

Minimum Spanning Trees (MST) Graphs III



A Union-Find structure

Supports:
e Make-Set(v), Union-Set(u, v), Find-Set(v)

Refined solution: Maintain elements in the same set in a
linked list with each element having a pointer to the first
element in the list (unique representative), and in a
union-set, always link the smaller list after the longer list.

Analysis: We'll count the total nb of pointers that are
changed in all calls to Union-Set(). Assume we start with
|V sets.

Minimum Spanning Trees (MST) Graphs III



A Union-Find structure

Supports:
e Make-Set(v), Union-Set(u, v), Find-Set(v)

Refined solution: Maintain elements in the same set in a
linked list with each element having a pointer to the first
element in the list (unique representative), and in a
union-set, always link the smaller list after the longer list.

Analysis: We'll count the total nb of pointers that are
changed in all calls to Union-Set(). Assume we start with
|V| sets. How many times can a pointer of an element
change?

Minimum Spanning Trees (MST) Graphs III



A Union-Find structure

Supports:
e Make-Set(v), Union-Set(u, v), Find-Set(v)

Refined solution: Maintain elements in the same set in a
linked list with each element having a pointer to the first
element in the list (unique representative), and in a
union-set, always link the smaller list after the longer list.

Analysis: We'll count the total nb of pointers that are
changed in all calls to Union-Set(). Assume we start with
|V| sets. How many times can a pointer of an element
change? Every time an element changes its pointer, it
belongs to a set of at least double the size than what it was
before.

Minimum Spanning Trees (MST) Graphs III



A Union-Find structure

Supports:
e Make-Set(v), Union-Set(u, v), Find-Set(v)

Refined solution: Maintain elements in the same set in a
linked list with each element having a pointer to the first
element in the list (unique representative), and in a
union-set, always link the smaller list after the longer list.

Analysis: We'll count the total nb of pointers that are
changed in all calls to Union-Set(). Assume we start with
|V| sets. How many times can a pointer of an element
change? Every time an element changes its pointer, it
belongs to a set of at least double the size than what it was
before. Thus, the pointer of an element can change at most
lg V' times.

Minimum Spanning Trees (MST) Graphs III



A Union-Find structure

Supports:
e Make-Set(v), Union-Set(u, v), Find-Set(v)

Refined solution: Maintain elements in the same set in a
linked list with each element having a pointer to the first
element in the list (unique representative), and in a
union-set, always link the smaller list after the longer list.

Analysis: We'll count the total nb of pointers that are
changed in all calls to Union-Set(). Assume we start with
|V| sets. How many times can a pointer of an element
change? Every time an element changes its pointer, it
belongs to a set of at least double the size than what it was
before. Thus, the pointer of an element can change at most
lg V' times. Overall, |V| — 1 Union-Set() calls will run in
O(V'1gV) time.

Minimum Spanning Trees (MST) Graphs III



Union-Find structure

Actually, a much better bound for a Union-Find structure
can be obtained:
@ use rooted trees (instead of lists)

e the representative of the set containing u: the root of
the tree that contains u

e Find-Set(u): go up the path from u to its root

o at Union-Set: connect the smaller tree as a child of the
larger tree

e at Find-set: link all nodes on the path to the root as
children of the root.

Can be shown |V| operations run in O(Va(V]) time, which
is practically O(|V]) time.

Minimum Spanning Trees (MST) Graphs III



MST algorithms

Correctness:

Theorem

Let Vi, Vs be a partition of V' into two disjoint sets,
ViUV, =V. Consider all edges with one endpoint in V;
and another one in Vo. Then there is a MST that includes
the minimum-weight such edge e.

Minimum Spanning Trees (MST) Graphs III



MST algorithms

Correctness:

Theorem

Let Vi, Vs be a partition of V' into two disjoint sets,
ViUV, =V. Consider all edges with one endpoint in V;
and another one in Vo. Then there is a MST that includes
the minimum-weight such edge e.

Proof.

Let T be an MST of G. Assume by contradiction 7' does
not include e, then adding e to 1" creates a cycle. There
must be another edge on this cycle that has one endpoint
in V} and one in V5. It has weights > e. Remove it from T’
and add e instead; this gives a ST of weight < than before
— contradiction. O

Minimum Spanning Trees (MST) Graphs III



MST algorithms

Let V1, V5 be a partition of V' into two disjoint sets,
ViUV, =V. Consider all edges with one endpoint in V;
and another one in Vo. Then there is a MST that includes
the minimum-weight such edge e.

Correctness:
Argue that Prim’s and Kruskal’s algorithms are correct by
using the theorem, and chosing the partition appropriately.

Minimum Spanning Trees (MST) Graphs III



