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Minimum Spanning Tree (MST)

Problem: Given an undirected, weighted, connected graph
G, compute a spanning tree of minimum weight.

where

e Spanning tree: a subgraph of G that is a tree and
contains all vertices of G.

@ The weight of a tree 1" is the sum of the weights of its

edges:
w(T) = Z Wy p

(u,w)eT

Note: G needs to be connected to admit a ST. If not, first
find its CCs, and then find an MST for each component —
minimum spanning forest (MSF).
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Minimum Spanning Tree (MST)

Two approaches, both greedy:
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Minimum Spanning Tree (MST)

Two approaches, both greedy:

o Kruskal’s algorithm:
Start with an empty tree T'. Consider the edges in G
in increasing order of weight. Add edges to 1" in order
of weight unless doing so would create a cycle.
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Minimum Spanning Tree (MST)

Two approaches, both greedy:

o Kruskal’s algorithm:
Start with an empty tree T'. Consider the edges in G
in increasing order of weight. Add edges to 1" in order
of weight unless doing so would create a cycle.

@ Prim’s algorithm:
Start with an empty tree T'. Greedily grow T one edge
at a time. At each step, add the edge of minimum
weight that has exactly one endpoint in 7.
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Prim’s MST algorithm

Idea:

e Start with a tree T' containing an arbitrary vertex r
and no edges

e Grow T by repeatedly adding minimum-weight edge
connecting a vertex in the current 7" with a vertex not
inT
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Prim’s MST algorithm

Idea:

e Start with a tree T' containing an arbitrary vertex r
and no edges

e Grow T by repeatedly adding minimum-weight edge
connecting a vertex in the current 7" with a vertex not
inT

Implementation:

e To find mimimum-weight edge connected to current T’
we maintain a priority queue on vertices not in 7.

@ The priority of a vertex is the weight of the
mimimum-weight edge connecting v to the tree.
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Prim’s MST algorithm

@ pick arbitrary vertex r

o Initialize:
For each v € V, Insert(PQ, (v,00)).
Decrease-Key(PQ, r, 0).
e while PQ not empty do:
o u = Delete-Min(PQ)
e output the edge (u,visit(u)) as part of MST
o for each (u,v) € E do:

o if v € PQ and w,, < key(v) then
visit(v) = u
Decrease-Key(PQ, v, wyy)
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Prim’s MST algorithm

@ pick arbitrary vertex r

o Initialize:
For each v € V, Insert(PQ, (v,00)).
Decrease-Key(PQ, r, 0).
e while PQ not empty do:
o u = Delete-Min(PQ)
e output the edge (u,visit(u)) as part of MST
o for each (u,v) € E do:
o if v € PQ and w,, < key(v) then
visit(v) = u
Decrease-Key(PQ, v, wyy)

Analysis: |V Insert, |V| Delete-Min, |F| Decrease-Key
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Prim’s MST algorithm

@ pick arbitrary vertex r

o Initialize:
For each v € V, Insert(PQ, (v,00)).
Decrease-Key(PQ, r, 0).
e while PQ not empty do:
o u = Delete-Min(PQ)

e output the edge (u,visit(u)) as part of MST
o for each (u,v) € E do:

o if v € PQ and w,, < key(v) then
visit(v) = u
Decrease-Key(PQ, v, wyy)

Analysis: |V Insert, |V| Delete-Min, |F| Decrease-Key
— O(ElgV) with a heap
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Kruskal’s MST algorithm

Idea:
e Start with |V trees, each consisting of one vertex and
no edges.

@ Consider edges in F in increasing order of weight; add
an edge if it connects two trees
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Kruskal’s MST algorithm

Idea:
e Start with |V trees, each consisting of one vertex and
no edges.

@ Consider edges in F in increasing order of weight; add
an edge if it connects two trees
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Kruskal’s MST algorithm

Idea:

e Start with |V trees, each consisting of one vertex and
no edges.

@ Consider edges in F in increasing order of weight; add
an edge if it connects two trees

Implementation:
e sort F by weight

e How to decide if an edge (u,v) creates a cycle, or
connects two trees?
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Kruskal’s MST algorithm

Idea:
e Start with |V trees, each consisting of one vertex and
no edges.

@ Consider edges in F in increasing order of weight; add
an edge if it connects two trees

Implementation:
e sort F by weight

e How to decide if an edge (u,v) creates a cycle, or
connects two trees?
Comes down to checking if vertices u, v are in the same
tree, or not.
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Kruskal’s MST algorithm

e Initialize: T consists of all vertices, and no edges
e Sort E by weight
e For each edge (u,v) in order do:

o if u,v in the same “tree” (i.e. connected in T'): skip
o clse: add edge (u,v) to T’
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Kruskal’s MST algorithm

e Initialize: T consists of all vertices, and no edges

e Sort E by weight

e For each edge (u,v) in order do:
o if u,v in the same “tree” (i.e. connected in T'): skip
o else: add edge (u,v) to T

How to check if u,v are in the same CC of T7
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Kruskal’s MST algorithm

How to check if u, v are in the same CC of T'?
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Kruskal’s MST algorithm

How to check if u, v are in the same CC of T'?
Ideas:

Could run BFS/DFS on T every time.... too slow.
Or...
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Kruskal’s MST algorithm

How to check if u, v are in the same CC of T'?
Ideas:

Could run BFS/DFS on T every time.... too slow.
Or...

We need a data structure that supports:
e Make-Set(v): create set containing v

e Union-Set(u,v): unite set containing u and set
containing v

e Find-Set(v): return unique representative for set
containing v

Called Union-Find data structure
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Kruskal’s MST algorithm

o Initialize:
T consists of all vertices, and no edges
For each v € V', Make-Set(v)

e Sort F by weight
e For each edge (u,v) in order do:
o if Find-Set(u) # Find-Set(v):
add edge (u,v) to T'
Union-Set (u, v)
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Kruskal’s MST algorithm

o Initialize:
T consists of all vertices, and no edges
For each v € V', Make-Set(v)

e Sort F by weight
e For each edge (u,v) in order do:
o if Find-Set(u) # Find-Set(v):
add edge (u,v) to T'
Union-Set (u, v)
Analysis: E'lg E to sort; |V| Make-Set, 2|E| Find-Set,
|V| — 1 Union-Set
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A Union-Find structure

e Make-Set(v): create set containing v

e Union-Set(u,v): unite set containing u and set
containing v

e Find-Set(v): return unique representative for set
containing v
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A Union-Find structure

e Make-Set(v): create set containing v

e Union-Set(u,v): unite set containing u and set
containing v

e Find-Set(v): return unique representative for set
containing v

Simple solution:
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A Union-Find structure

e Make-Set(v): create set containing v

e Union-Set(u,v): unite set containing u and set
containing v

e Find-Set(v): return unique representative for set
containing v

Simple solution:

Maintain elements in the same set in a linked list with each
element having a pointer to the first element in the list
(unique representative)
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A Union-Find structure

e Make-Set(v): create set containing v

e Union-Set(u,v): unite set containing u and set
containing v

e Find-Set(v): return unique representative for set
containing v

Simple solution:

Maintain elements in the same set in a linked list with each
element having a pointer to the first element in the list
(unique representative)

Find-Set(u) runs in O(1) time, but Union-Set(u, v) needs
O(|V]) time.
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A Union-Find structure

e Make-Set(v): create set containing v

e Union-Set(u,v): unite set containing u and set
containing v

e Find-Set(v): return unique representative for set
containing v

Simple solution:

Maintain elements in the same set in a linked list with each
element having a pointer to the first element in the list
(unique representative)

Find-Set(u) runs in O(1) time, but Union-Set(u, v) needs
O(|V]) time.
= Kruskal’s algorithm runs in O(ElgV + V?). Too slow.
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A Union-Find structure

Supports:
e Make-Set(v), Union-Set(u, v), Find-Set(v)

Refined solution: Maintain elements in the same set in a
linked list with each element having a pointer to the first
element in the list (unique representative), and in a
union-set, always link the smaller list after the longer list.
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A Union-Find structure

Supports:
e Make-Set(v), Union-Set(u, v), Find-Set(v)

Refined solution: Maintain elements in the same set in a
linked list with each element having a pointer to the first
element in the list (unique representative), and in a
union-set, always link the smaller list after the longer list.

Analysis: We'll count the total nb of pointers that are
changed in all calls to Union-Set(). Assume we start with
|V sets.
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A Union-Find structure

Supports:
e Make-Set(v), Union-Set(u, v), Find-Set(v)

Refined solution: Maintain elements in the same set in a
linked list with each element having a pointer to the first
element in the list (unique representative), and in a
union-set, always link the smaller list after the longer list.

Analysis: We'll count the total nb of pointers that are
changed in all calls to Union-Set(). Assume we start with
|V| sets. How many times can a pointer of an element
change?
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A Union-Find structure

Supports:
e Make-Set(v), Union-Set(u, v), Find-Set(v)

Refined solution: Maintain elements in the same set in a
linked list with each element having a pointer to the first
element in the list (unique representative), and in a
union-set, always link the smaller list after the longer list.

Analysis: We'll count the total nb of pointers that are
changed in all calls to Union-Set(). Assume we start with
|V| sets. How many times can a pointer of an element
change? Every time an element changes its pointer, it
belongs to a set of at least double the size than what it was
before.
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A Union-Find structure

Supports:
e Make-Set(v), Union-Set(u, v), Find-Set(v)

Refined solution: Maintain elements in the same set in a
linked list with each element having a pointer to the first
element in the list (unique representative), and in a
union-set, always link the smaller list after the longer list.

Analysis: We'll count the total nb of pointers that are
changed in all calls to Union-Set(). Assume we start with
|V| sets. How many times can a pointer of an element
change? Every time an element changes its pointer, it
belongs to a set of at least double the size than what it was
before. Thus, the pointer of an element can change at most
lg V' times.
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A Union-Find structure

Supports:
e Make-Set(v), Union-Set(u, v), Find-Set(v)

Refined solution: Maintain elements in the same set in a
linked list with each element having a pointer to the first
element in the list (unique representative), and in a
union-set, always link the smaller list after the longer list.

Analysis: We'll count the total nb of pointers that are
changed in all calls to Union-Set(). Assume we start with
|V| sets. How many times can a pointer of an element
change? Every time an element changes its pointer, it
belongs to a set of at least double the size than what it was
before. Thus, the pointer of an element can change at most
lg V' times. Overall, |V| — 1 Union-Set() calls will run in
O(V'1gV) time.
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Union-Find structure

Actually, a much better bound for a Union-Find structure
can be obtained:
@ use rooted trees (instead of lists)

e the representative of the set containing u: the root of
the tree that contains u

e Find-Set(u): go up the path from u to its root

o at Union-Set: connect the smaller tree as a child of the
larger tree

e at Find-set: link all nodes on the path to the root as
children of the root.

Can be shown |V| operations run in O(Va(V]) time, which
is practically O(|V]) time.
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MST algorithms

Correctness:

Theorem

Let Vi, Vs be a partition of V' into two disjoint sets,
ViUV, =V. Consider all edges with one endpoint in V;
and another one in Vo. Then there is a MST that includes
the minimum-weight such edge e.
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MST algorithms

Correctness:

Theorem

Let Vi, Vs be a partition of V' into two disjoint sets,
ViUV, =V. Consider all edges with one endpoint in V;
and another one in Vo. Then there is a MST that includes
the minimum-weight such edge e.

Proof.

Let T be an MST of G. Assume by contradiction 7' does
not include e, then adding e to 1" creates a cycle. There
must be another edge on this cycle that has one endpoint
in V} and one in V5. It has weights > e. Remove it from T’
and add e instead; this gives a ST of weight < than before
— contradiction. O
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MST algorithms

Let V1, V5 be a partition of V' into two disjoint sets,
ViUV, =V. Consider all edges with one endpoint in V;
and another one in Vo. Then there is a MST that includes
the minimum-weight such edge e.

Correctness:
Argue that Prim’s and Kruskal’s algorithms are correct by
using the theorem, and chosing the partition appropriately.
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