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Minimum Spanning Tree (MST)

Problem: Given an undirected, weighted, connected graph
G, compute a spanning tree of minimum weight.

where

Spanning tree: a subgraph of G that is a tree and
contains all vertices of G.

The weight of a tree T is the sum of the weights of its
edges:

w(T ) =
∑

(u,v)∈T

wu,v

Note: G needs to be connected to admit a ST. If not, first
find its CCs, and then find an MST for each component →
minimum spanning forest (MSF).
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Minimum Spanning Tree (MST)

Two approaches, both greedy:

Kruskal’s algorithm:
Start with an empty tree T . Consider the edges in G
in increasing order of weight. Add edges to T in order
of weight unless doing so would create a cycle.

Prim’s algorithm:
Start with an empty tree T . Greedily grow T one edge
at a time. At each step, add the edge of minimum
weight that has exactly one endpoint in T .
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Prim’s MST algorithm

Idea:

Start with a tree T containing an arbitrary vertex r
and no edges

Grow T by repeatedly adding minimum-weight edge
connecting a vertex in the current T with a vertex not
in T

Implementation:

To find mimimum-weight edge connected to current T
we maintain a priority queue on vertices not in T .

The priority of a vertex is the weight of the
mimimum-weight edge connecting v to the tree.
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Prim’s MST algorithm

pick arbitrary vertex r

Initialize:
For each v ∈ V , Insert(PQ, (v,∞)).
Decrease-Key(PQ, r, 0).

while PQ not empty do:

u = Delete-Min(PQ)
output the edge (u, visit(u)) as part of MST
for each (u, v) ∈ E do:

if v ∈ PQ and wu,v < key(v) then
visit(v) = u
Decrease-Key(PQ, v, wuv)

Analysis: |V | Insert, |V | Delete-Min, |E| Decrease-Key
→ O(E lg V ) with a heap
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Kruskal’s MST algorithm

Idea:

Start with |V | trees, each consisting of one vertex and
no edges.

Consider edges in E in increasing order of weight; add
an edge if it connects two trees

Implementation:

sort E by weight

How to decide if an edge (u, v) creates a cycle, or
connects two trees?
Comes down to checking if vertices u, v are in the same
tree, or not.
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Kruskal’s MST algorithm

Initialize: T consists of all vertices, and no edges

Sort E by weight

For each edge (u, v) in order do:

if u, v in the same “tree” (i.e. connected in T ): skip
else: add edge (u, v) to T

How to check if u, v are in the same CC of T?
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Kruskal’s MST algorithm

How to check if u, v are in the same CC of T?

Ideas:
Could run BFS/DFS on T every time.... too slow.
Or...

We need a data structure that supports:

Make-Set(v): create set containing v

Union-Set(u, v): unite set containing u and set
containing v

Find-Set(v): return unique representative for set
containing v

Called Union-Find data structure
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Kruskal’s MST algorithm

Initialize:
T consists of all vertices, and no edges
For each v ∈ V , Make-Set(v)

Sort E by weight

For each edge (u, v) in order do:

if Find-Set(u) 6= Find-Set(v):
add edge (u, v) to T
Union-Set(u, v)

Analysis: E lgE to sort; |V | Make-Set, 2|E| Find-Set,
|V | − 1 Union-Set
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A Union-Find structure

Make-Set(v): create set containing v

Union-Set(u, v): unite set containing u and set
containing v

Find-Set(v): return unique representative for set
containing v

Simple solution:
Maintain elements in the same set in a linked list with each
element having a pointer to the first element in the list
(unique representative)

Find-Set(u) runs in O(1) time, but Union-Set(u, v) needs
O(|V |) time.
⇒ Kruskal’s algorithm runs in O(E lg V + V 2). Too slow.
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A Union-Find structure

Supports:

Make-Set(v), Union-Set(u, v), Find-Set(v)

Refined solution: Maintain elements in the same set in a
linked list with each element having a pointer to the first
element in the list (unique representative), and in a
union-set, always link the smaller list after the longer list.

Analysis: We’ll count the total nb of pointers that are
changed in all calls to Union-Set(). Assume we start with
|V | sets. How many times can a pointer of an element
change? Every time an element changes its pointer, it
belongs to a set of at least double the size than what it was
before. Thus, the pointer of an element can change at most
lg V times. Overall, |V | − 1 Union-Set() calls will run in
O(V lg V ) time.
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Union-Find structure

Actually, a much better bound for a Union-Find structure
can be obtained:

use rooted trees (instead of lists)

the representative of the set containing u: the root of
the tree that contains u

Find-Set(u): go up the path from u to its root

at Union-Set: connect the smaller tree as a child of the
larger tree

at Find-set: link all nodes on the path to the root as
children of the root.

Can be shown |V | operations run in O(V α(V |) time, which
is practically O(|V |) time.
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MST algorithms

Correctness:

Theorem

Let V1, V2 be a partition of V into two disjoint sets,
V1 ∪ V2 = V . Consider all edges with one endpoint in V1
and another one in V2. Then there is a MST that includes
the minimum-weight such edge e.

Proof.

Let T be an MST of G. Assume by contradiction T does
not include e, then adding e to T creates a cycle. There
must be another edge on this cycle that has one endpoint
in V1 and one in V2. It has weights ≥ e. Remove it from T
and add e instead; this gives a ST of weight ≤ than before
— contradiction.
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MST algorithms

Theorem

Let V1, V2 be a partition of V into two disjoint sets,
V1 ∪ V2 = V . Consider all edges with one endpoint in V1
and another one in V2. Then there is a MST that includes
the minimum-weight such edge e.

Correctness:
Argue that Prim’s and Kruskal’s algorithms are correct by
using the theorem, and chosing the partition appropriately.
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