In-class exercises: Divide-and-conquer

The skyline problem/the upper envelope problem:
In this problem we design a divide-and-conquer algorithm for computing the skyline of a set of n buildings.

A building B_{i} is represented as a triplet $\left(\mathbf{L}_{\mathbf{i}}, H_{i}, \mathbf{R}_{\mathbf{i}}\right)$ where $\mathbf{L}_{\mathbf{i}}$ and $\mathbf{R}_{\mathbf{i}}$ denote the left and right x coordinates of the building, and H_{i} denotes the height of the building (note that the x coordinates are drawn boldfaced.)

A skyline of a set of n buildings is a list of x coordinates and the heights connecting them arranged in order from left to right (note that the list is of length at most $4 n$).

Example: The skyline of the buildings

$$
\{(\mathbf{3}, 13, \mathbf{9}),(\mathbf{1}, 11, \mathbf{5}),(\mathbf{1 2}, 7, \mathbf{1 6}),(\mathbf{1 4}, 3, \mathbf{2 5}),(\mathbf{1 9}, 18, \mathbf{2 2}),(\mathbf{2}, 6, \mathbf{7}),(\mathbf{2 3}, 13, \mathbf{2 9}),(\mathbf{2 3}, 4, \mathbf{2 8})\}
$$

is
$\{\mathbf{1}, 11, \mathbf{3}, 13, \mathbf{9}, 0, \mathbf{1 2}, 7, \mathbf{1 6}, 3, \mathbf{1 9}, 18, \mathbf{2 2}, 3, \mathbf{2 3}, 13, \mathbf{2 9}, 0\}$
(note that the x coordinates in a skyline are sorted).

1. Let the size of a skyline be the total number of elements (coordinates and heights) in its list. Describe an algorithm for combining a skyline A of size n_{1} and a skyline B of size n_{2} into one skyline S of size $O\left(n_{1}+n_{2}\right)$. Your algorithm should run in time $O\left(n_{1}+n_{2}\right)$.
2. Describe an $O(n \log n)$ algorithm for finding the skyline of n buildings.
