
In-class work: Weighted interval scheduling

This problem is not in the textbook, but is a classic dynamic-programming problem. It is the
more general version of the activity selection problem in CLRS 16 — which we’ll discuss next time.

The problem: Imagine you have a set of jobs: each job has to start and end at a certain time
and has a certain value or weight. The weight of a job measures its importance—higher weight if
more important; if all jobs were “equal” they would have all equal weights. Furthermore, imagine
we have a single classroom where we can schedule these jobs. We want to pick a set of jobs that
we can assign to the classroom.

• First, this set of jobs has to be compatible, or non-overlapping (so that they can be scheduled
in the same classroom).

• Second, we want to weigh in the weights: Of all possible choices, we want to find a subset of
jobs (to schedule in the classroom) of maximum total weight.

Here is the more abstract version of this problem: Given a set of intervals I1, I2, ..., In with
their start times s[1..n], finish times f [1..n], and values v[1..n], find a subset of compatible (non-
overlapping) intervals of maximal total value:

find S ⊆ I such that S compatible and
∑
i∈S

vi is maximized

As always, for simplicity, we’ll start by computing only the maximal value of the subset. Once
we know how to do this, we’ll extend the solution to compute not only the value, but the actual
subset of jobs that achieve this value.

1. Optimal substructure: Does this problem have optimal substructure? Why?

2. Building intuition: Consider a subset of activities S that represents the optimal solution.
An interval Ik is either in S, or not. When we come to deciding whether an activity is part of
the solution or not, we have precisely two choices. Now let’s try to come up with a recursive
formulation that uses this insight.

3. Notation I: Coming up up with a suitable notation can be tricky. Here we are giving you
the notation:

Let us assume that the jobs are ordered by non-decreasing finish time fi:

f1 ≤ f2 ≤ f3.... ≤ fn

1

Define p(j) to be the job with the largest index less than j which is compatible with job j. In
other words, the largest index k such that fk ≤ sj . If no such job exists then define p(j) = 0.

Note that none of the intervals I1, I2, ...Ip(j) intersects with Ij .

Draw a set of 8 activities, number them so that they are orderd by finish time, and show p(j)
for all activities.

4. Show how to compute all p(i), i = 1..n in O(n2) time; what about in O(n lg n) time? Remem-
ber that we assume the activitoes are numbered in order of their finish times; you may also
assume that you have a list of the activities sorted by their start times. Could you compute
all p(i) in O(n) time? You can assume that the activities are sorted also by end times.

2

5. Notation II: Let S(i) denote the maximum weight of any set of compatible jobs, all of
which finish by fi.

We want to compute S(n).

Assume we have computed p(i), i = 1..n.

Give the recursive formulation for S(i), including the basecase:

6. Write the recursive algorithm that computes S(i).

3

7. Analysis: Let T (n) be the worst-case running time of computing S(n). Write a recurrence
relation for T (n).

8. Argue that T (n) is exponential.

9. Describe a dynamic programming solution and analyze its running time.

4

