Skip Lists

- There are several schemes for keeping search trees reasonably balanced with $O(\log n)$ height. Somewhat complicated.
- When we discussed Quick-sort we saw how randomization can lead to good expected running times.
- Randomization can be used to obtain a very simple search structure with expected performance $O(\log n)$ for all (independent of data!)
- Idea in a skip list is best illustrated if we try to build a "search tree" on top of double linked list:
- Insert elements $-\infty$ and ∞
- Repeatedly construct double linked list (level S_{i}) on top of current list (level S_{i-1}) by choosing every second element (and link equal elements together)
- Since every level is half teh size of the one below, it follows that there are $O(\log n)$ levels.

- Search (e) : Start at topmost left element. Repeatedly drop down one level and search forward until max element $\leq e$ is found.
- Example: Search for 8

- How to Insert/Delete ? seems hard to do in better than $O(n)$ time since we might need to rebuild the entire structure after one of the operations.
- Idea: level S_{i} consist of a randomly generated subset of elements at level S_{i-1}.
- To decide if an element on level S_{i-1} should be on level S_{i}, we flip a coin and include the element if it is head.
\Downarrow
Expected size of S_{1} is $\frac{n}{2}$
Expected size of S_{2} is $\frac{n}{4}$
\vdots
Expected size of S_{i} is $\frac{n}{2^{i}}$
\Downarrow
Expected height is $O(\log n)$
- Operations:
- Search(e) as before.
- Delete(e): Search to find e and delete all occurrences of e.
- Insert(e):
* search to find position of e in S_{0}
* Insert e in S_{0}.
* Repeatedly flip a coin; insert e and continue to next level if it comes up head.
- Running time of all the operations is bounded by search running time
- Down search takes $O($ height $)=O(\log n)$ expected.
- Right search/scan:
* If we scan an element on level i it cannot be on level $i+1$ (because then we would have scanned it there) \Downarrow
* Expected number of elements we scan on level i is the expected number of times we have to flip a coin to get head \Downarrow
* We expect to scan 2 elements on level i \Downarrow
* Running time is $O($ height $)=O(\log n)$ expected.
- Note:
- We only really need forward and down pointers.
- Expected space use is $\sum_{i=0}^{\log n} \frac{n}{2^{i}} \leq n \cdot \sum_{i=0}^{\infty} \frac{1}{2^{i}}=O(n)$.

