
Skip Lists

• There are several schemes for keeping search trees reasonably balanced with O(log n) height. Somewhat
complicated.

• When we discussed Quick-sort we saw how randomization can lead to good expected running times.

• Randomization can be used to obtain a very simple search structure with expected performance
O(log n) for all (independent of data!)

• Idea in a skip list is best illustrated if we try to build a “search tree” on top of double linked list:

– Insert elements −∞ and ∞
– Repeatedly construct double linked list (level Si) on top of current list (level Si−1) by choosing

every second element (and link equal elements together)

• Since every level is half teh size of the one below, it follows that there are O(log n) levels.

3 6 8 9 1171

1

1

1

5

5

7

7

9

1

12

12

12 15 17

17

12

S

S

S

S

S

S

0

1

2

3

4

5

• Search(e): Start at topmost left element. Repeatedly drop down one level and search forward until
max element ≤ e is found.

• Example: Search for 8

3 6 8 9 1171

1

1

1

5

5

7

7

9

1

12

12

12 15 17

17

12

S

S

S

S

S

S

0

1

2

3

4

5

1



• How to Insert/Delete ? seems hard to do in better than O(n) time since we might need to rebuild
the entire structure after one of the operations.

• Idea: level Si consist of a randomly generated subset of elements at level Si−1.

– To decide if an element on level Si−1 should be on level Si, we flip a coin and include the element
if it is head.
⇓
Expected size of S1 is n

2
Expected size of S2 is n

4
...
Expected size of Si is n

2i

⇓
Expected height is O(log n)

• Operations:

– Search(e) as before.

– Delete(e): Search to find e and delete all occurrences of e.

– Insert(e):

∗ search to find position of e in S0

∗ Insert e in S0.

∗ Repeatedly flip a coin; insert e and continue to next level if it comes up head.

• Running time of all the operations is bounded by search running time

– Down search takes O(height) = O(log n) expected.

– Right search/scan:

∗ If we scan an element on level i it cannot be on level i + 1 (because then we would have
scanned it there)
⇓

∗ Expected number of elements we scan on level i is the expected number of times we have to
flip a coin to get head
⇓

∗ We expect to scan 2 elements on level i
⇓

∗ Running time is O(height) = O(log n) expected.

• Note:

– We only really need forward and down pointers.

– Expected space use is
∑logn

i=0
n
2i ≤ n ·

∑∞
i=0

1
2i = O(n).

2


