Skip Lists

- There are several schemes for keeping search trees reasonably balanced with $O(\log n)$ height. Somewhat complicated.
- When we discussed Quick-sort we saw how randomization can lead to good expected running times.
- Randomization can be used to obtain a very simple search structure with expected performance $O(\log n)$ for all (independent of data!)
- Idea in a skip list is best illustrated if we try to build a "search tree" on top of double linked list:
 - Insert elements $-\infty$ and ∞
 - Repeatedly construct double linked list (level S_i) on top of current list (level S_{i-1}) by choosing every second element (and link equal elements together)
- Since every level is half the size of the one below, it follows that there are $O(\log n)$ levels.

- Search(e): Start at topmost left element. Repeatedly drop down one level and search forward until max element $\leq e$ is found.
- Example: Search for 8

- How to Insert/Delete? seems hard to do in better than O(n) time since we might need to rebuild the entire structure after one of the operations.
- Idea: level S_i consist of a randomly generated subset of elements at level S_{i-1} .

- To decide if an element on level S_{i-1} should be on level S_i , we flip a coin and include the element if it is head.

```
 \downarrow  Expected size of S_1 is \frac{n}{2} Expected size of S_2 is \frac{n}{4} :
:
: Expected size of S_i is \frac{n}{2^i} \downarrow  Expected height is O(\log n)
```

- Operations:
 - Search(e) as before.
 - Delete(e): Search to find e and delete all occurrences of e.
 - Insert(e):
 - * search to find position of e in S_0
 - * Insert e in S_0 .
 - * Repeatedly flip a coin; insert e and continue to next level if it comes up head.
- Running time of all the operations is bounded by search running time
 - Down search takes $O(height) = O(\log n)$ expected.
 - Right search/scan:
 - * If we scan an element on level i it cannot be on level i+1 (because then we would have scanned it there)
 - ∜
 - * Expected number of elements we scan on level i is the expected number of times we have to flip a coin to get head
 - ∜
 - * We expect to scan 2 elements on level $i \hspace{0.1 cm} \downarrow \hspace{0.1 cm} \downarrow$
 - * Running time is $O(height) = O(\log n)$ expected.
- Note:
 - We only really need forward and down pointers.
 - Expected space use is $\sum_{i=0}^{\log n} \frac{n}{2^i} \le n \cdot \sum_{i=0}^{\infty} \frac{1}{2^i} = O(n).$