Red Black Trees

(CLRS 13)

A Red-Black tree is a binary search tree where each node is colored either RED or BLACK such that the
following invariants are satisfied:

1. The root is BLACK.
2. A RED node can only have BLACK children.

3. Every path from a root down to a “leaf” contains the same number of BLACK nodes. Here a “leaf”
means a node with less than two children.

To understand invariant (3), it may be easier to conceptualize the tree such that the nodes with less than
two children are linked to NIL leaves, see Figure below. Thus invariant (3) becomes: any path from the root
to a NIL leaf has to have the same number of BLACK nodes.

":'! Example of a red-black tree

NIL NIL NIL NIL NIL NIL

Note that if invariant (3) holds for the root, then it must also hold for any node z in the tree (that is,
the number of black nodes from an arbitrary node in a RB-tree to all “leaves” in its subtree is the same).

The RB-tree invariants guarantee that the height of a RB-tree is ©(Ilgn).
Theorem: A red-black tree with n elements has height O(Ign).

Proof: All paths from root to a leaf must have the same number of black nodes, but we can have red
nodes interleaved between black nodes. This means that the the longest and shortest path from the root to
a leaf are such that hpae < 2Rmin. Then using the fact that a complete binary tree of height h has 2"+ —1
nodes, we get that

Qhmin®l 1 < pp < 2hmeatl

and from here [...] we get that hy,.. = O(lgn)



Insertion in Red-Black Trees

INSERT(T, k):

An insertion in a Red-Black tree is the same as insertion in a binary search tree, searching for k starting
from the root, until reaching NULL and inserting a node with key k as a leaf node; at the end the new node
must be given a color. The question is what color: We can’t make it BLACK (bacause it violates inv. 3),
so we color it RED. This may violate invariant (2) between the node and its parent. We'll try to fix the
violation by recoloring, or move the violation up the tree, until it can be fixed.

Let 2 be the current node (initially this is the leaf we just inserted); it is RED; it’s children, if they exist,
are BLACK (initially x is a leaf so it has no children so this is true).

e If x is the root: actually, in this case, we can make it BLACK. The number of black nodes on all paths
increases by one, but they all stay equal. We are done.

e If 2’s parent is BLACK, then invariant (2) is maintained. We are done.

e If 2’s parent is RED:

1. CASE 1: z’s parent is RED, and its uncle exists and is RED: Recolor the parent and uncles to
BLACK, recolor the grandparent to RED. Now the grandparent becomes the new . Repeat.

(Or, children of Push C’s black onto

A are swapped.) A and D, and recurse,
since C’s parent may
be red.

2. CASE 2: z’s parent is RED, it’s uncle is BLACK or does not exist, and z is a right child, and its
parent is a left child: Rotate-left at x, and transform to case 3.

Transform to Case 3.

Note: The symmetrical case where z is a left child, and it parent is a right child is handled
symmetrically: Rotate-right at =, and transform to case 3.

3. CASE 3: z’s parent is RED, it’s uncle is BLACK or does not exist, and z is a left child, and its
parent is a left child: rotate-right at grandparent of z. Done.



AAAA
Done! No more
violations of RB

property 3 are
possible.

Note: The case where x is a right child and its parent is a right child is handled symmetrically:
rotate-left at grand-parent of . Done.

Remarks: Each case either resolves the problem (via O(1) rotations and recolorings) or moves it up in
the tree. In the worst case insetion will hit case 1 every time and will move the problem node x up the tree
until z will be the root; then it will color it BLACK. Thus an insertion can be performed in O(h) = O(Ilgn)
time.

Deletion in Red-Black Trees

Handling deletion is similar, and can be performed in O(h) = O(lgn) time.



