
Binary Search Trees: Data Structures for Ordered Sets
(CLRS 12.1-12.3)

• At a high level, we have a set of elements S and we want to represent S with a data structure such
that the following operations are supported efficiently:

– Search(e): Return (pointer to) element e in S (if e ∈ S)

– Insert(e): Insert element e in S

– Delete(e): Delete element e from S

– Successor(e): Return (pointer to) minimal element in S larger than e

– Predecessor(e): Return (pointer to) maximal element in S smaller than e

• The first implementation that comes to mind is the ordered array:

1 3 5 6 7 8 9 11 12 15 17

– Search can be performed in O(n) time by scanning through array or in O(log n) time using
binary search

– Predecessor/Successor can be performed in O(log n) time like searching

– Insert/Delete takes O(n) time since we need to expand/compress the array after finding the
position of e

• Perhaps an unordered list?
17 15 11 127683519

– Search takes O(n) time since we have to scan the list

– Predecessor/Successor takes O(n) time

– Insert takes O(1) time since we can just insert e at beginning of list

– Delete takes O(n) time since we have to perform a search before spending O(1) time on deletion

• How about ... an ordered list ?

12 171511976531 8

– Search takes O(n) time since we cannot perform binary search

– Predecessor/Successor takes O(n) time

– Insert/Delete takes O(n) time since we have to perform a search to locate the position of
insertion/deletion

1

Binary search tree implementation

• We want to combine the advantages of sorted arrays (fast search) with the advantages of lists (fast
insert and delete)

• Binary search naturally leads to definition of binary search tree

8

12

17

1596

3 117

1

5

• Formal definition of search tree:

– Binary tree with elements in nodes

– If node v holds element e then

∗ All elements in left subtree ≤ e

∗ All elements in right subtree > e

> e< e

e

• Search(e) in O(height): Compare with e and recursively search in left or right subtree

• Insert(e) in O(height): Search for e and insert at place where search path terminates (Note: height
may increase)

Example: Insertion of 13

8

12

17

1596

3 117

1

5

13

2

• Delete(e) in O(height): Search for node v containing e,

1. v is a leaf: Delete v

2. v is internal node with one child: Delete v and attach child(v) to parent(v)

Example: Delete 7

8

12

17

159

3 11

1

5

13

6

3. v is internal node with two children:

– exchange e in v with successor e′ in node v′ (minimal element in right subtree, found by
following left branches as long as possible in right subtree)

– v′ node can be deleted by case 1 or 2

Example: Delete 12

8

17

159

3 11

1

5

6

13

• Class work: How do you find the successor/predecessor of a given node?

• Class work: Assume you have a BST of n elements. How long does it take to sort them?

• Note:

– Running time of all operations depend on height of tree.

– Intuitively the tree will be nicely balanced if we do insertion and deletion randomly.

– In worst case the height can be O(n).

3

