
Heaps. Heapsort.
(CLRS 6)

So far we have discussed tools necessary for analysis of algorithms (growth, summations and
recurrences) and we have seen a couple of sorting algorithms as case-studies.

Today we discuss a data structure called priority queue, and its implementation with a heap.
The heap will lead us to a different algorithm for sorting, called heapsort.

1 Priority Queue

• A priority queue maintains a set of elements which have priorities. For example: the elements
can be numbers, and in this case the priority is the value; the elements can be people records
containing first name, last name and age, where the priority of a person is the age. Generally
speaking imagine an element as containing possibly several fields, and one of them is the
designated priority. The goal is to store the set of elements in order to efficiently insert new
elements, and find the elements of “best priority”.

• A priority queue supports the following operations on a set S of n elements:

– Insert a new element e in S

– Peek at the best element in S

– Delete the best element in S

• The best element is the one having the best priority. Depending on the specific application
and what priorities represent, sometimes smaller priorities are better than larger priorities
(for e.g. when priority represents the error), other times larger priorities are better than
smaller priorities (for e.g. when priority represents seniority). We can define max-priority
queues and min-priority queues.

• A max-priority queue supports the following basic operations:

– Insert: Insert a new element e in S

– Find-Max: Return the element with max priority in S

– Delete-Max: Delete the elements with max priority in S

• Symmetrically, a min-priority queue supports the following basic operations:

– Insert: Insert a new element e in S

– Find-Min: Return the element with min priority in S

– Delete-Min: Delete the elements with min priority in S
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• Priority queues have many applications, e.g. in discrete event simulation, graph algorithms,
process scheduling

• We can obviously sort using a priority queue:

– Insert all elements using Insert

– Delete all elements in order using Delete-Min

• Sometimes we may require priority queues to support the following additional operations:

– Change the priority of an element in S

– Delete an element from S

• How to implement a priority queue? We’ll focus on min-priority queues. Max-priority queues
are symmetrical.

2 Implementing a priority queue with an array or list

• The first implementation that comes to mind is an ordered array:

1 3 5 6 7 8 9 11 12 15 17

– Find-Min can be performed in O(1) time

– Delete-Min and Insert both take Θ(n) time in the worst case since they would need
to expand/compress the array after inserting or deleting element.

• If the array is unordered, then inserts are faster, because the new element can be added at
the end (however in the worst case it’s still Θ(n) because it needs to re-allocate the array and
copy all elements over). Find-Min and Delete-Min would take Θ(n) time worst-case because
they need to traverse the unordered array and search for the minimum.

• To avoid the limitations of arrays we could use an ordered double linked sorted list (to avoid
the O(n) expansion/compression cost)

– FIND-MIN and DELETE-MIN are now constant time;

– but Insert can still take O(n) time because it first needs to locate where in the list to
insert the new element.

3 A Priority Queue with a Heap

The standard implementation of a priority queue is a simple and elegant structure called heap.

• Heap definition:

– Perfectly balanced binary tree; the lowest level can be incomplete, but filled from
left-to-right.

– Heap property: For all nodes v we have priority(v)≥priority(parent(v))
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• Note: this is a min-heap; a symmetrical definition gives the max-heap.

• Min-heap example:

2

5 3

9 19 11 4

15 14

• The beauty of heaps is that although they are trees, they can be implemented as arrays. The
elements in the heap are stored level-by-level, left-to-right in the array.

Example:

2 5 3 9 19 11 4 15 14

– the left and right children of node in entry i are in entry 2i and 2i + 1, respectively

– the parent of node in entry i is in entry b i2c

• Properties of heaps:

– Height Θ(log n)

– For a min-heap: Minimum of S is stored in root (for a max-heap, the maximum element
is stored in the root).

• Insert in a heap:

– Insert element in new leaf in leftmost possible position on lowest level

– Repeatedly swap element with element in parent node until heap order is reestablished
(this is refered to as up-heapify).

Example: Insertion of 4

191415

41159

34

22

5 3

9 19 11 4

15 14 4

• Find-Min in a heap:
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– Return root element

• Delete-Min in a heap:

– Delete element in root

– Move element from rightmost leaf on lowest level to the root (and delete leaf)

– Repeatedly swap element with the smaller of the children elements until heap order is
reestablished (this is refered to as down-heapify or sometimes just Heapify).

Example:

19

4 3

9 5 11 4

15 14

3

4 4

9 5 11 19

15 14

• Heapify

– Used by Delete-min

– Generally speaking Heapify can be called on a node i: Heapify(i) means it is called
on node i in the heap. When calling Heapify(i) the left and right children of node i must
be heaps. After Heapify (i) is complete, the tree rooted at node i is a heap.

• Running time: All operations traverse at most one root-leaf path ⇒ O(log n) time.

• Other operations: Change and delete

– Changing the priority of a given node or deleting a given node can be handled similarly
in O(log n) time. However, it’s important to realize that we can delete or update nodes
in a heap if we are given their index in the array. For e.g. we cannot say “delete the
node with priority 37” because we cannot search (efficiently) in a heap! But we can say
“delete the node at index 5”.

3.1 Building a heap in O(n) time

Say you got n elements in an array A, and you want to build a heap out of them.

• The straightforward way is to insert them one at a time.

BUILDHEAP-straightforward (A)

– For i = 1 to n: insert (A[i])

This works but takes Θ(n lg n) worst case.

• It is actually possible to build a heap faster, in linear time. This is a neat and simple
algorithm. The idea is to call Heapify() on all nodes, going bottom-up in the tree.
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BUILDHEAP-smart (A)

– For i = n/2 down to 1: Heapify(i)

• Recall how Heapify works: Heapify(i) means it’s called on node i in the heap. When
calling Heapify(i) the left and right children of node i must be heaps, and after Heapify
(i) is complete, the tree rooted at node i is a heap.

• Correctness: Why does this work? Note that we call Heapify bottom-up, which means that
when doing level i, all trees rooted at level i − 1 have been already made into heaps, so the
invariants of Heapify are fullfilled (Note: Formally this would require induction on height of
tree).

• Analysis:

– The leaves are at height 0, the level above is at height 1, and so on, the root is at height
log n

– Cost of Heapify(i) on a node i at height h is O(h)

– In a heap of n elements there are d n
2h
e elements at height h

– Total cost is
∑logn

i=1 h · d n
2h
e = Θ(n) ·

∑logn
i=1

h
2h

– This is not a sum that we can immediately compute, but it can be shown that
∑logn

i=1
h
2h

=
O(1) =⇒ the total buildheap cost is Θ(n)

4 Heapsort

• Sorting using a heap takes Θ(n log n) time.

– O(n) time to build a heap.

– n ·O(log n) time to call Delete-Min to get the next element in order

• This is not in place. An in-place sorting algorithm with a heap is possible, and it is reffered
to as heapsort.

– Build a max-heap

– Repeatedly, delete the largest element, and put it at the end of the array.
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