Worksheet: Heaps

1. (CLRS 6.1-1) What are the minimum and maximum number of elements in a heap of height h ? Note: the height of a heap is the number of edges on the longest root-to-leaf path.
2. (CLRS 6.1-2) Show that an n-element heap has height $\Theta(\lg n)$ (more precisely, $\lceil\lg n\rceil)$.
3. (CLRS 6.1-3) Where in a min-heap might the largest element reside, assuming that all elements are distinct?
4. (CLRS 6.1-5) Is an array that is in sorted order a min-heap?
5. (CLRS 6.1-7) Argue that the leaves are the nodes indexed by $\lfloor n / 2\rfloor+1, \ldots,\lfloor n / 2\rfloor+2, \ldots, n$.
6. What is the effect of calling $\operatorname{HEAPIFY}(A, i)$ for $i>\operatorname{size}[A] / 2$?. Here i is the index of the node where HEAPIFY is called.
7. (CLRS 6.5-2) Illustrate the operation of HEAP-INSERT (A, 7) on the heap (note: this is a min-heap):

$$
A=\{2,5,10,6,8,100,11,9,15,9,10,200,101\}
$$

8. (CLRS 6.5-3) Write pseudocode for the procedure HEAP-INSERT on a min-heap.
9. (CLRS 6.2-1) Illustrate the operation of $\operatorname{HEAPIFY}(A, 1)$ on

$$
A=\{(20,5,10,6,8,100,11,9,15,9,10,200,101,12\}
$$

10. (CLRS 6.3-1) Illustrate the operation of BUILD-MAX-HEAP on the array

$$
A=\{5,3,17,10,84,19,6,22,9\}
$$

11. (CLRS 6.4-1) Illustrate the operation of Heapsort on the array

$$
A=\{5,13,2,25,7,17,20,8,4\}
$$

12. (CLRS 6.4-3) What is the running time of Heapsort on an array of length n that is already sorted in increasing order? What about decreasing order?
13. How would you implement a function that searches for a given element in a heap, and how long would it take in the worst case?
14. (GT C-2.31) Develop an algorithm that computes the k th smallest element in a set of n distinct integers in $O(n+k \lg n)$ time.
