
Algorithms Lab 9

In lab

1. Finish “Applications of BFS and DFS” handout.

2. Draw a small DAG (< 10 vertices), perform a DFS on G and mark the finish times of
all vertices. Now consider an arbitrary edge (u, v): what can you say about the finish
time of u compared to the finish time of v? Can you prove it? What does this mean
as far as a topological order of G is concerned?

Homework

1. (CLRS 22.4-2) Give a linear-time algorithm that takes as input a directed acyclic graph
G = (V,E) and two vertices s and t, and returns the number of simple paths from s to
t in G. For example, the DAG in Fig. 22.8 CLRS contains exactly four simple paths
from p to v: pov, poryv, posryv abd psryv. Your algorithms needs to only count the
simple paths, not list then.

Hint: dynamic programming on DAGs. Check SSSP chapter on shortest paths on
DAGs.

2. Assume you are given a DAG, and you want to compute “longest” paths; the edges
do not have weights, and we use the sttandard convention that the length of a path is
the number of edges on the path.

(a) Describe how to compute the longest path in a DAG starting from a specified
vertex.

(b) Describe how to compute the longest path in a DAG.

Hint: dynamic programming on DAGs.

3. (4.2.32 Sedgewick Wayne) (Hamiltonian paths in DAGs) Given a DAG, design a linear
time algorithm to determine whether there is a directed path that visits each vertex
exactly one.

4. (4.2.31 Sedgewick Wayne) Describe a linear time algorithm for computing the strong
component containing a given vertex v. On the basis of that algorithm, describe a
simple quadratic time algorithm for computing the strong components of a digraph.

1


