
Algorithms Lab 5

(Selection and D&C)

1 Homework problems

1. Implement the selection algorithm that runs in linear time. Feel free to adjust the code to
use a local index i or a global index i.

2. Let A be a list of n (not necessarily distinct) integers. Describe an O(n)-algorithm to test
whether any item occurs more than dn/2e times in A. Your algorithm should use O(1)
additional space. A general solution should not make any additional assumptions about the
integers.

3. (GT C-4.23, CLRS 9.3-7) Given an unordered sequence S of n elements (for simplicity, assume
items are integers or real numbers), describe an efficient method for finding the d

√
ne elements

that are closest to the median of S. What is the running time of your method? Try for linear
time.

4. (adapted form GT C-4.27, CLRS 9.3-6) Given an unsorted sequence S of n elements, and an
integer k, we want to find O(k) elements that have rank dn/ke, 2dn/ke, 3dn/ke, and so on.

(a) Describe the “naive” algorithm that works by repeated selection, and analyze its running
time function of n and k.

(b) Describe an improved algorithm that runs in O(n lg k) time.

5. (CLRS 9-3.9) Professor Olay is consulting for an oil company, which is planning a large
pipeline running east to west through an oil field of n wells.The company wants to connect a
spur pipeline from each well directly to the main pipeline along a shortest route (either north
or south), as shown in textbook CLRS figure 9.2. Given the x- and y-coordinates of the wells,
show how the professor should pick the optimal location of the main pipeline, which would
be the one that minimizes the total length of the spurs. Show how to determine the optimal
location in linear time. Hint: Assume professor Olay is a computer science major and she
loves algorithms!

6. Suppose we are given an array A[1..n] with the special property that A[1] ≥ A[2] and A[n−1] ≤
A[n]. We say that an element A[x] is a local minimum if it is less or equal to both its neighbors,
or more formally, if A[x − 1] ≥ A[x] and A[x ≤ A[x + 1]. For example. there are six local
minima in the following array:

A = [9, 7, 7, 2, 1, 3, 7, 5, 4, 7, 3, 3, 4, 8, 6, 9]

1



.

We can obviously find a a local minimum in O(n) time by scanning through the array.
Describe and analyze an algorithm that finds a local minimum in O(lg n) time. (Hint: with
the given boundary conditions, the array must have at least one local minimum. Why? )

7. The skyline problem/the upper envelope problem: In this problem we design a divide-and-
conquer algorithm for computing the skyline of a set of n buildings.

A building Bi is represented as a triplet (Li, Hi,Ri) where Li and Ri denote the left and
right x coordinates of the building, and Hi denotes the height of the building (note that the
x coordinates are drawn boldfaced.)

A skyline of a set of n buildings is a list of x coordinates and the heights connecting them
arranged in order from left to right (note that the list is of length at most 4n).

Example: The skyline of the buildings

{(3, 13,9), (1, 11,5), (12, 7,16), (14, 3,25), (19, 18,22), (2, 6,7), (23, 13,29), (23, 4,28)}

is
{(1, 11), (3, 13), (9, 0), (12, 7), (16, 3), (19, 18), (22, 3), (23, 13), (29, 0)}

(note that the x coordinates in a skyline are sorted).

5 10 15 20 25 300

5

10

15

20

5 10 15 20 25 300

5

10

15

20

buildings skyline

(a) Let the size of a skyline be the number of elements (tuples) in its list.

Describe an algorithm for combining a skyline A of size n1 and a skyline B of size n2

into one skyline S of size O(n1 + n2). Your algorithm should run in time O(n1 + n2).

(b) Describe an O(n log n) algorithm for finding the skyline of n buildings.

8. (CLRS 2-4) Let A[1..n] be an array of n distinct numbers. If i < j and A[i] > A[j], then the
pair (i, j) is called an inversion of A.

a. List the inversions of the array < 2, 3, 8, 6, 1 >.

b. What array with elements from the set {1, 2, ..., n} has the most inversions? How many
does it have?

c. Give an algorihm that determines the number of inversions in an array in O(n2) time.

d. Give an algorihm that determines the number of inversions in an array in O(n lg n) time
worst-case (Hint: modify merge sort).

2


