
Algorithms Lab 10
In lab

1. Consider the directed graph below and assume you want to compute SSSP(s).

s a

d

b c5 1

1

-9

10

(a) Run Bellman-Ford algorithm.

(b) Run Dijkstra’s algorithm and reflect on why it does not work.

2. Suppose you had a bunch of undirected edges (given as adjacency lists) and you want
to figure out if they form a tree. How would you do it, and how fast?

3. Prove that the following claim is false by showing a counterexample:

Claim: Let G = (V,E) be a directed graph with negative-weight edges, but no negative-
weight cycles. Let w,w < 0, be the smallest weight in G. Then one can compute SSSP
in the following way: transform G into a graph with all positive weights by adding
−w to all edges, run Dijkstra, and subtract from each shortest path the corresponding
number of edges times w. Thus, SSSP can be solved by Dijkstra’s algorithm even on
graph with negative weights.

4. Suppose the degree requirements for a computer science major are organized as a
DAG (directed acyclic graph), where vertices are required courses and an edge (x, y)
means course x must be completed prior to beginning course y. We make the following
assumptions:

• All classes are required to major.

• All prerequisites must be obeyed.

• There is a course, CPS1, that must be taken before any other course.

• Every course is offered every semester, and there are enough slots for everyone
who wants to register (unlike our department).

• These classes involve no work, so you can take as many as you want in any one
semester (again, unlike our department).

1



Describe an efficient algorithm to compute the minimum number of semesters required
to complete the major. Analyze its running time.

5. Consider a directed graph G, and assume that instead of shortest paths we want to
compute longest paths. Longest paths are defined in the natural way, ie the longest
path from u to v is the path of largest overall weight among all possible paths from u
to v. Note that if the graph contains a positive cycle, then longest paths are not well
defined (for the same reason that shortest paths are not well defined when the graph
has a negative cycle). So what we want is the longest simple path, (a path is called
simple if it contains no vertex more than once).

Show that the the longest simple path problem does not have optimal substructure by
coming up with a small graph that provides a counterexample.

Note: Finding longest (simple) paths is a classical hard problem, and it is known to
be NPC (NP-complete).

Homework

1. (CLRS 24.3-6) We are given a directed graph G = (V,E) on which each edge (u, v) has
an associated value r(u, v), which is a real number in the range [0, 1] that represents
the reliability of a communication channel from vertex u to vertex v. We interpret
r(u, v) as the probability tht the channel from u to v will not fail, and we assume
that these probabilities are independent. Give an efficient algorithm to find the most
reliable path between two given vertices.

2. (GT C-7.7) Suppose you are given a diagram of a telephone network, which is a graph
G whose vertices represent switching centers, and whose edges represent communica-
tion links between the two centers. The edges are marked by their bandwidth. The
bandwidth of a path is the minimum bandwidth along the path. Give an algorithm
that, given two switching centers a and b, will output a maximum bandwidth path
between a and b.

3. Consider a directed weighted graph with non-negative weights and V vertices arranged
on a rectangular grid. Each vertex has an edge to its southern, eastern and southeastern
neighbours (if existing). The northwest-most vertex is called the root. The figure below
shows an example graph with V = 12 vertices and the root drawn in black:

2 7 1

1 9 5

13 2 6

11

6

17

3

8

4

0

8 0 2

1 7

0

4

2



Assume that the graph is represented such that each vertex can access all its neighbours
in constant time.

(a) How long would it take Dijkstra’s algorithm to find the length of the shortest
path from the root to all other vertices? (Your bound should be function of V ).

(b) Describe an algorithm that finds the length of the shortest paths from the root
to all other vertices in O(V ) time.

(c) Describe an efficient algorithm for solving the all-pair-shortest-paths problem on
the graph (it is enough to find the length of each shortest path).

3


