PRIM’s MST algorithm

e Start with spanning tree containing arbitrary an vertex r and no edges

e Grow spanning tree by repeatedly adding minimal weight edge connecting vertex in current
tree with a vertex not in the tree

e To find minimal edge connected to current tree we maintain a priority queue on vertices not
in the tree:

— The key /priority of a vertex v is the weight of minimal weight edge connecting v to the
tree. We maintain pointer from adjacency list of v to v in the priority queue.

— For each node v maintain visit(v) such that edge (v, visit(v)) is the best edge connecting
v to the current tree.

PRIM

/* initialize */

Pick arbitrary vertex r

For each vertex u € V,u # r: INSERT(PQ, u, 00)
INSERT(PQ,r,0), visit(r) = NULL

/* main loop */

WHILE P(@ not empty

u = DELETE-MIN(PQ)
For each (u,v) € E:

IF v € PQ and w(u,v) < key(v):
visit[v] = u

DECREASE-KEY(PQ, v, w(u,v))

Output edges (u,visit(u)) as part of MST.

Kruskal’s MST algorithm

KRUSKAL

/* initialize */

For each vertex v € V: MAKE-SET(v)

Sort edges of E in increasing order by weight

/* main loop */

FOR each edge e = (u,v) € E in order of weight:

IF FIND-SET(u) # FIND-SET(v) THEN

output edge e as part of MST

UNION-SET(u, v)




