
Graphs

Part I: Basic algorithms

Laura Toma
Algorithms (csci2200), Bowdoin College

Part I: Basic algorithms Graphs

Undirected graphs

Concepts:

connectivity, connected components

paths

(undirected) cycles

Basic problems, given undirected graph G:

is G connected

how many connected components (CC) are in G?

label each vertex with its CC id

find a path between u and v

does G contain a cycle?

compute a spanning forest for G

Part I: Basic algorithms Graphs

(Undirected) DFS

Idea: explore the graph “depth-first”. Similar to how you’d
try to find a path out of a maze.

Easiest to write it recursively. Usually keep track of the
vertex that first discovered a vertex u; we call that the
parent of u.

DFS(vertex v)

mark v

for each adjacent edge (v, u):
if u is not marked:

mark u
parent(u) = v
DFS(u)

Part I: Basic algorithms Graphs

(Undirected) DFS

DFS-tree: Each vertex, except the source vertex v, has a
parent ⇒ these edges define a tree, called the DFS-tree.

During DFS(v) each edge in G is classified as:

tree edge: an edge leading to an unmarked vertex

non-tree edge: an edge leading to a marked vertex.

Part I: Basic algorithms Graphs

(Undirected) DFS

Lemma

DFS(u) visits all vertices in the connected component (CC)
of u, and the DFS-tree is a spanning tree of CC(u).

Proof sketch: Assume by contradiction that there is a vertex v in CC(u) that is

not reached by DFS(u). Since u, v are in same CC, there must exist a path

v0 = u, v1, v2, ..., vk, v connecting u to v. Let vi be the last vertex on this path

that is reached by DFS(u) (vi could be u). When exploring vi, DFS must have

explored edge (vi, vi+1),..., leading eventually to v. Contradiction.

Part I: Basic algorithms Graphs

(Undirected) DFS

Tree:

ancestors of x: parent, grandparent,..., i.e., all vertices on the path from x
to root

descendants of x: chidlren, grandschildren,.., i.e. all vertices in the subtree
rooted at x

Lemma

For a given call DFS(u), all vertices that are marked
between the start and end of this call are all descendants of
u in the DFS-tree.

To understand why this is true, visualize how the recursion works in DFS(v). The

outgoing edges (v, ∗) are visited one at a time, calling DFS recursively on nodes

that will become v’s children; when all edges outgoing from v are visited, DFS(v)

terminates and returns. While the children of v are explored, the call DFS(v)

stays on stack. Repeat this argument, and you’ll see that when DFS(x) is called,

the following functions are active on stack: DFS(parent(x)),

DFS(grandparent(x)),....,DFS(v).

Part I: Basic algorithms Graphs

(Undirected) DFS

Lemma

Non-tree edges encountered during undirected DFS(v) go
from a vertex to an ancestor of that vertex.

Proof: Let’s say DFS(v) reaches a vertex x and explores edge (x, y), at which
point it sees that y is marked. We want to show that y is an ancestor of x. We
know that all ancestors of x are marked and “unfinished”, i.e. their DFS frames
are active, on stack, and the system will backtrack to finish them. In contrast, a
vertex that is marked but not an ancestor of x is “finished”, i.e. all its outgoing
edges were exploredf and DFS will not backtrack there.

Now assume by contradiction, that y is marked but is not an ancestor of x: then

DFS has finished exploring y; when y was visited, edge must have been (y, x)

explored and x could not have been marked at that time, so x would have been

made a child of y —- contradiction.

Part I: Basic algorithms Graphs

(Undirected) DFS

As written above, DFS explores only the CC of v. DFS can
be used to explore all the CCs in G:

mark all vertices as “unmarked”

for each vertex v

if v is marked, skip
if v is not marked: DFS(v)

Lemma

DFS runs in O(|V |+ |E|) time.

Proof: It explores every vertex once. Once a vertex is marked, it’s not explored

again. It traverses each edge twice. Overall, O(|V |+ |E|).

Part I: Basic algorithms Graphs

(Undirected) DFS

Undirected DFS can be used to solve in O(|V |+ |E|) time
the following problems:

is G connected?

compute the number of CC of G

compute a spanning forest of G

compute a path between two vertices of G, or report
that such a path does not exist

compute a cycle, or report that no cycle exists

Part I: Basic algorithms Graphs

(Undirected) BFS

Idea: explore outwards, one layer at a time. Visualize a
wave propagating outwards. BFS logically subdivides the
vertices into layers.

BFS(vertex u)
mark u, d(u) =0, Q = {}
while Q not empty

remove the next vertex v from Q

for all edges (v, w) do
if w is not marked:

mark w
parent(w)=u //(v, w) is a tree edge
d(w) = d(v) + 1
add w to Q

//else: w is marked, (v, w) is non-tree edge

Part I: Basic algorithms Graphs

Undirected BFS

BFS-tree: Each vertex, except the source vertex v, has a
parent ⇒ these edges define a tree, called the DFS-tree.

During BFS(v) each edge in G is classified as:

tree edge: an edge leading to an unmarked vertex

non-tree edge: an edge leading to a marked vertex.

Part I: Basic algorithms Graphs

Undirected BFS

Lemma

BFS(u) visits all vertices in the connected component (CC)
of u, and the BFS-tree is a spanning tree of CC(u).

Proof sketch: Assume by contradiction that there is a vertex v in CC(u) that is

not reached by BFS(u). Since u, v are in same CC, there must exist a path

v0 = u, v1, v2, ..., vk, v connecting u to v. Let vi be the last vertex on this path

that is reached by BFS(u) (vi could be u). When exploring vi, BFS must have

explored edge (vi, vi+1),..., leading eventually to v. Contradiction.

Part I: Basic algorithms Graphs

Undirected BFS

As written above, BFS explores only the CC of v. BFS can
be used to explore all the CCs in G:

mark all vertices as “unmarked”

for each vertex v

if v is marked, skip
if v is not marked: BFS(v)

Lemma

BFS runs in O(|V |+ |E|) time.

Proof: It explores every vertex once. Once a vertex is marked, it’s not explored

again. It traverses each edge twice. Overall, O(|V |+ |E|).

Part I: Basic algorithms Graphs

Undirected BFS

Lemma

Let x be a vertex reached in BFS(v). The path v → x
contains d(i) edges and represents the shortest path from v
to x in G.

Notation: length of shortest path from v to u is δ(v, u).
Proof idea: The complete proof is quite long.....The idea is contradiction: Assume

there exists at least one vertex for which BFS(v) does not compute the right

distance. Among these vertices, let u be the vertex with the smallest distance

from v. Let p = (v, ..., u) be the shortest path from v to u of length δ(v, u). The

vertex x just before u on this path has shortest path to v of length

δ(v, x) = δ(v, u)− 1 (subpaths of shortest paths are shortest paths bla bla..). This

vertex is correctly labeled by BFS (because of our assumption), so

d(x) = δ(v, x) = δ(v, u)− 1. But because of edge (x, u), BFS will find a path to u

of length d(v, x) + 1, i.e. d(u) = δ(v, u).

Part I: Basic algorithms Graphs

Undirected BFS

Lemma

For any non-tree edge (x, y) in BFS(v), the level of x and y
differ by at most one.

In other words, x, y are on the same level or on consecutive
levels; there cannot be non-tree edges that jump over more
than one level.
Proof idea: Intuitively, this is because all immediate neighbors that are not

marked are put on the next level. Observe that, at any point in time, the vertices

in the queue have distances that differ by at most 1. This can be shown easily

with induction (bla bla). Let’s say x comes out first from the queue; at this time y

must be already marked (because otherwise (x, y) would be a tree edge).

Furthermore y has to be in the queue, because, if it wasn’t, it means it was

already deleted from the queue and we assumed x was first. So y has to be in the

queue, and we have |d(y)− d(x)| ≤ 1 by above observation.

Part I: Basic algorithms Graphs

Undirected BFS

Undirected BFS can be used to solve in O(|V |+ |E|) time
the following problems:

is G connected?

compute the number of CC of G

compute a spanning forest of G

compute shortest path between two vertices of G

compute a cycle, or report that no cycle exists

Part I: Basic algorithms Graphs

Directed graphs (Digraphs)

Concepts:

reachability

directed paths and cycles

strongly connected components (SCC)

directed acyclyc graphs (DAGs)

transitive closure (TC)

Problems:

given u, v: does u reach v?

given u: find all vertices reachabla from u

is G strongly connected?

is G acyclic?

compute the SCCs

compute the TC G∗ of G

Part I: Basic algorithms Graphs

Directed DFS

Same as undirected, but visit the outgoing edges of a vertex

Properties:

DFS(v) visits all vertices reachable from v.

the DFS-tree contains directed paths from v to all
vertices reachable from v

runs in O(|V |+ |E|)
non-tree edges (x, y) are of 3 types:

back edge: y is an ancestor of x in DFS tree
forward edges: y is a descendant of x in the DFS tree
cross edges: y is neither ancestor nor descendant

all 3 types of non-tree edges are possible in directed
DFS

a non-tree back edge defines a directed cycle

Part I: Basic algorithms Graphs

Directed DFS

Given a digraph G, directed DFS can be used to solve the
following in O(|V |+ |E|):

does the graph contain a directed cycle?

find a directed cycle

given v, find all vertices reachable from v

given u, v: find a path from u to v or report that there
is none

Part I: Basic algorithms Graphs

Directed BFS

Same as undirected, but visit the outgoing edges of a vertex

Properties:

BFS(v) visits all vertices reachable from v.

the BFS-tree contains directed paths from v to all
vertices reachable from v

BFS(v) computes the shortest paths from v to all
vertices reachable from v

runs in O(|V |+ |E|)
forward non-tree edges are not possible

When visiting x, all outgoing edges are explored at the same time. If

y is not marked, y becomes the child of x. If y is marked, it’s either a

back edge or a cross edge. A forward edge (x, y) is not possible.

Part I: Basic algorithms Graphs

Directed BFS

Given a digraph G, directed BFS can be used to solve the
following in O(|V |+ |E|):

find directed cycles

given v, find all vertices reachable from v

given u, v: find the shortest path from u to v

Part I: Basic algorithms Graphs

Is G strongly connected?

Idea: for each v run BFS(v). G is SC if and only if every
vertex reaches all other vertices. This runs in
O(V · (V + E)).

Can we do better?

YES. Run BFS twice. Total O(V + E).

run BFS(v) from an arbitrary vertex v. If this does
not reach all u ∈ V (u 6= v), G is not SC.

If it does, run a modified BFS(v) that visits the
incoming edges in a vertex. If all u ∈ V (u 6= v) are
reached by this BFS, then we conclude G is SC.

given x, y ∈ V : x reaches v, and v reaches y, so x
reaches y. The other way around, too.

Note: Can use BFS or DFS. SCCs can be found in
O(V + E) but it’s more complicated.

Part I: Basic algorithms Graphs

Transitive closure

Idea: for each v, run BFS(v), and for all vertices w reached,
output an edge (v, w). Runs in O(V · (V + E)).

Can we do better?

YES. Idea: If a reaches b and b reaches c, then a reaches c.
Use this to avoid recomputation. Dynamic programming.

Part I: Basic algorithms Graphs

Transitive closure with dynamic programming

Ideas:

Number the vertices 1, 2, 3, ..., n

We’ll compute G∗ in rounds, starting from G.

In round 1: G → G1

We start with all edges in G, and we add a new edge
(i, j) for every pair of vertices such that i can reach j
going only through vertex 1.

How does a path (i, j) that goes only through vertex 1
look like? (i, j), (i, 1, j)

When does it exist? When (i, j) exists, or (i, 1) and
(1, j) both exist

This comes down to checking, if there exist edges (i, 1)
and (1, j) in G.

Part I: Basic algorithms Graphs

Transitive closure with dynamic programming

Ideas:
Number the vertices 1, 2, 3, ..., n

We’ll compute G∗ in rounds, starting from G.

In round 1: G → G1

We start with all edges in G, and we add a new edge
(i, j) for every pair of vertices such that i can reach j
going only through vertex 1.

How does a path (i, j) that goes only through vertex 1
look like? (i, j), (i, 1, j)

When does it exist? When (i, j) exists, or (i, 1) and
(1, j) both exist

This comes down to checking, if there exist edges (i, 1)
and (1, j) in G.

Part I: Basic algorithms Graphs

Transitive closure with dynamic programming

Ideas:
Number the vertices 1, 2, 3, ..., n

We’ll compute G∗ in rounds, starting from G.

In round 1: G → G1

We start with all edges in G, and we add a new edge
(i, j) for every pair of vertices such that i can reach j
going only through vertex 1.

How does a path (i, j) that goes only through vertex 1
look like? (i, j), (i, 1, j)

When does it exist? When (i, j) exists, or (i, 1) and
(1, j) both exist

This comes down to checking, if there exist edges (i, 1)
and (1, j) in G.

Part I: Basic algorithms Graphs

Transitive closure with dynamic programming

Ideas:
Number the vertices 1, 2, 3, ..., n

We’ll compute G∗ in rounds, starting from G.

In round 1: G → G1

We start with all edges in G, and we add a new edge
(i, j) for every pair of vertices such that i can reach j
going only through vertex 1.

How does a path (i, j) that goes only through vertex 1
look like? (i, j), (i, 1, j)

When does it exist? When (i, j) exists, or (i, 1) and
(1, j) both exist

This comes down to checking, if there exist edges (i, 1)
and (1, j) in G.

Part I: Basic algorithms Graphs

Transitive closure with dynamic programming

Ideas:
Number the vertices 1, 2, 3, ..., n

We’ll compute G∗ in rounds, starting from G.

In round 1: G → G1

We start with all edges in G, and we add a new edge
(i, j) for every pair of vertices such that i can reach j
going only through vertex 1.

How does a path (i, j) that goes only through vertex 1
look like? (i, j), (i, 1, j)

When does it exist? When (i, j) exists, or (i, 1) and
(1, j) both exist

This comes down to checking, if there exist edges (i, 1)
and (1, j) in G.

Part I: Basic algorithms Graphs

Transitive closure with dynamic programming

Ideas:
Number the vertices 1, 2, 3, ..., n

We’ll compute G∗ in rounds, starting from G.

In round 1: G → G1

We start with all edges in G, and we add a new edge
(i, j) for every pair of vertices such that i can reach j
going only through vertex 1.

How does a path (i, j) that goes only through vertex 1
look like?

(i, j), (i, 1, j)

When does it exist? When (i, j) exists, or (i, 1) and
(1, j) both exist

This comes down to checking, if there exist edges (i, 1)
and (1, j) in G.

Part I: Basic algorithms Graphs

Transitive closure with dynamic programming

Ideas:
Number the vertices 1, 2, 3, ..., n

We’ll compute G∗ in rounds, starting from G.

In round 1: G → G1

We start with all edges in G, and we add a new edge
(i, j) for every pair of vertices such that i can reach j
going only through vertex 1.

How does a path (i, j) that goes only through vertex 1
look like? (i, j), (i, 1, j)

When does it exist? When (i, j) exists, or (i, 1) and
(1, j) both exist

This comes down to checking, if there exist edges (i, 1)
and (1, j) in G.

Part I: Basic algorithms Graphs

Transitive closure with dynamic programming

Ideas:
Number the vertices 1, 2, 3, ..., n

We’ll compute G∗ in rounds, starting from G.

In round 1: G → G1

We start with all edges in G, and we add a new edge
(i, j) for every pair of vertices such that i can reach j
going only through vertex 1.

How does a path (i, j) that goes only through vertex 1
look like? (i, j), (i, 1, j)

When does it exist?

When (i, j) exists, or (i, 1) and
(1, j) both exist

This comes down to checking, if there exist edges (i, 1)
and (1, j) in G.

Part I: Basic algorithms Graphs

Transitive closure with dynamic programming

Ideas:
Number the vertices 1, 2, 3, ..., n

We’ll compute G∗ in rounds, starting from G.

In round 1: G → G1

We start with all edges in G, and we add a new edge
(i, j) for every pair of vertices such that i can reach j
going only through vertex 1.

How does a path (i, j) that goes only through vertex 1
look like? (i, j), (i, 1, j)

When does it exist? When (i, j) exists, or (i, 1) and
(1, j) both exist

This comes down to checking, if there exist edges (i, 1)
and (1, j) in G.

Part I: Basic algorithms Graphs

Transitive closure with dynamic programming

Ideas:
Number the vertices 1, 2, 3, ..., n

We’ll compute G∗ in rounds, starting from G.

In round 1: G → G1

We start with all edges in G, and we add a new edge
(i, j) for every pair of vertices such that i can reach j
going only through vertex 1.

How does a path (i, j) that goes only through vertex 1
look like? (i, j), (i, 1, j)

When does it exist? When (i, j) exists, or (i, 1) and
(1, j) both exist

This comes down to checking, if there exist edges (i, 1)
and (1, j) in G.

Part I: Basic algorithms Graphs

Transitive closure with dynamic programming

Ideas:
Number the vertices 1, 2, 3, ..., n

We’ll compute G∗ in rounds, starting from G.

In round 2: G1 → G2

We start with all edges in G, and we add a new edge
(i, j) for every pair of vertices such that i can reach j
going only through vertices 1, 2.

How does a path (i, j) that goes only through 1, 2
looks like? (i, j), (i, 1, j), (i, 2, j), (i, 1, 2, j), (i, 2, 1, j))

When does it exist? When (i, j) exists in G1, or (i, 2)
and (2, j) both exist in G1

This comes down to checking, if there exist edges (i, 2)
and (2, j) in G1.

Part I: Basic algorithms Graphs

Transitive closure with dynamic programming

Ideas:
Number the vertices 1, 2, 3, ..., n

We’ll compute G∗ in rounds, starting from G.

In round 2: G1 → G2

We start with all edges in G, and we add a new edge
(i, j) for every pair of vertices such that i can reach j
going only through vertices 1, 2.

How does a path (i, j) that goes only through 1, 2
looks like? (i, j), (i, 1, j), (i, 2, j), (i, 1, 2, j), (i, 2, 1, j))

When does it exist? When (i, j) exists in G1, or (i, 2)
and (2, j) both exist in G1

This comes down to checking, if there exist edges (i, 2)
and (2, j) in G1.

Part I: Basic algorithms Graphs

Transitive closure with dynamic programming

Ideas:
Number the vertices 1, 2, 3, ..., n

We’ll compute G∗ in rounds, starting from G.

In round 2: G1 → G2

We start with all edges in G, and we add a new edge
(i, j) for every pair of vertices such that i can reach j
going only through vertices 1, 2.

How does a path (i, j) that goes only through 1, 2
looks like?

(i, j), (i, 1, j), (i, 2, j), (i, 1, 2, j), (i, 2, 1, j))

When does it exist? When (i, j) exists in G1, or (i, 2)
and (2, j) both exist in G1

This comes down to checking, if there exist edges (i, 2)
and (2, j) in G1.

Part I: Basic algorithms Graphs

Transitive closure with dynamic programming

Ideas:
Number the vertices 1, 2, 3, ..., n

We’ll compute G∗ in rounds, starting from G.

In round 2: G1 → G2

We start with all edges in G, and we add a new edge
(i, j) for every pair of vertices such that i can reach j
going only through vertices 1, 2.

How does a path (i, j) that goes only through 1, 2
looks like? (i, j), (i, 1, j), (i, 2, j), (i, 1, 2, j), (i, 2, 1, j))

When does it exist? When (i, j) exists in G1, or (i, 2)
and (2, j) both exist in G1

This comes down to checking, if there exist edges (i, 2)
and (2, j) in G1.

Part I: Basic algorithms Graphs

Transitive closure with dynamic programming

Ideas:
Number the vertices 1, 2, 3, ..., n

We’ll compute G∗ in rounds, starting from G.

In round 2: G1 → G2

We start with all edges in G, and we add a new edge
(i, j) for every pair of vertices such that i can reach j
going only through vertices 1, 2.

How does a path (i, j) that goes only through 1, 2
looks like? (i, j), (i, 1, j), (i, 2, j), (i, 1, 2, j), (i, 2, 1, j))

When does it exist?

When (i, j) exists in G1, or (i, 2)
and (2, j) both exist in G1

This comes down to checking, if there exist edges (i, 2)
and (2, j) in G1.

Part I: Basic algorithms Graphs

Transitive closure with dynamic programming

Ideas:
Number the vertices 1, 2, 3, ..., n

We’ll compute G∗ in rounds, starting from G.

In round 2: G1 → G2

We start with all edges in G, and we add a new edge
(i, j) for every pair of vertices such that i can reach j
going only through vertices 1, 2.

How does a path (i, j) that goes only through 1, 2
looks like? (i, j), (i, 1, j), (i, 2, j), (i, 1, 2, j), (i, 2, 1, j))

When does it exist? When (i, j) exists in G1, or (i, 2)
and (2, j) both exist in G1

This comes down to checking, if there exist edges (i, 2)
and (2, j) in G1.

Part I: Basic algorithms Graphs

Transitive closure with dynamic programming

Ideas:
Number the vertices 1, 2, 3, ..., n

We’ll compute G∗ in rounds, starting from G.

In round 2: G1 → G2

We start with all edges in G, and we add a new edge
(i, j) for every pair of vertices such that i can reach j
going only through vertices 1, 2.

How does a path (i, j) that goes only through 1, 2
looks like? (i, j), (i, 1, j), (i, 2, j), (i, 1, 2, j), (i, 2, 1, j))

When does it exist? When (i, j) exists in G1, or (i, 2)
and (2, j) both exist in G1

This comes down to checking, if there exist edges (i, 2)
and (2, j) in G1.

Part I: Basic algorithms Graphs

Transitive closure with dynamic programming

Ideas:
Number the vertices 1, 2, ..., n

We’ll compute G∗ in rounds, starting from G.

In round k+1: Gk → Gk+1

We start with all edges in Gk, and we add a new edge
(i, j) for every pair of vertices such that i can reach j
going only through vertices 1, 2, ..., k, k + 1.

How does a path (i, j) that goes only through
1, 2, ..., k, k + 1 look like? (i....j), (i..., k + 1,j)

When does it exist? When (i, j) exists in Gk, or
(i, k + 1) and (k + 1, j) both exist in Gk

This comes down to checking, if there exist edges
(i, k + 1) and (k + 1, j) in Gk.

Part I: Basic algorithms Graphs

Transitive closure with dynamic programming

Ideas:
Number the vertices 1, 2, ..., n

We’ll compute G∗ in rounds, starting from G.

In round k+1: Gk → Gk+1

We start with all edges in Gk, and we add a new edge
(i, j) for every pair of vertices such that i can reach j
going only through vertices 1, 2, ..., k, k + 1.

How does a path (i, j) that goes only through
1, 2, ..., k, k + 1 look like? (i....j), (i..., k + 1,j)

When does it exist? When (i, j) exists in Gk, or
(i, k + 1) and (k + 1, j) both exist in Gk

This comes down to checking, if there exist edges
(i, k + 1) and (k + 1, j) in Gk.

Part I: Basic algorithms Graphs

Transitive closure with dynamic programming

Ideas:
Number the vertices 1, 2, ..., n

We’ll compute G∗ in rounds, starting from G.

In round k+1: Gk → Gk+1

We start with all edges in Gk, and we add a new edge
(i, j) for every pair of vertices such that i can reach j
going only through vertices 1, 2, ..., k, k + 1.

How does a path (i, j) that goes only through
1, 2, ..., k, k + 1 look like?

(i....j), (i..., k + 1,j)

When does it exist? When (i, j) exists in Gk, or
(i, k + 1) and (k + 1, j) both exist in Gk

This comes down to checking, if there exist edges
(i, k + 1) and (k + 1, j) in Gk.

Part I: Basic algorithms Graphs

Transitive closure with dynamic programming

Ideas:
Number the vertices 1, 2, ..., n

We’ll compute G∗ in rounds, starting from G.

In round k+1: Gk → Gk+1

We start with all edges in Gk, and we add a new edge
(i, j) for every pair of vertices such that i can reach j
going only through vertices 1, 2, ..., k, k + 1.

How does a path (i, j) that goes only through
1, 2, ..., k, k + 1 look like? (i....j), (i..., k + 1,j)

When does it exist? When (i, j) exists in Gk, or
(i, k + 1) and (k + 1, j) both exist in Gk

This comes down to checking, if there exist edges
(i, k + 1) and (k + 1, j) in Gk.

Part I: Basic algorithms Graphs

Transitive closure with dynamic programming

Ideas:
Number the vertices 1, 2, ..., n

We’ll compute G∗ in rounds, starting from G.

In round k+1: Gk → Gk+1

We start with all edges in Gk, and we add a new edge
(i, j) for every pair of vertices such that i can reach j
going only through vertices 1, 2, ..., k, k + 1.

How does a path (i, j) that goes only through
1, 2, ..., k, k + 1 look like? (i....j), (i..., k + 1,j)

When does it exist?

When (i, j) exists in Gk, or
(i, k + 1) and (k + 1, j) both exist in Gk

This comes down to checking, if there exist edges
(i, k + 1) and (k + 1, j) in Gk.

Part I: Basic algorithms Graphs

Transitive closure with dynamic programming

Ideas:
Number the vertices 1, 2, ..., n

We’ll compute G∗ in rounds, starting from G.

In round k+1: Gk → Gk+1

We start with all edges in Gk, and we add a new edge
(i, j) for every pair of vertices such that i can reach j
going only through vertices 1, 2, ..., k, k + 1.

How does a path (i, j) that goes only through
1, 2, ..., k, k + 1 look like? (i....j), (i..., k + 1,j)

When does it exist? When (i, j) exists in Gk, or
(i, k + 1) and (k + 1, j) both exist in Gk

This comes down to checking, if there exist edges
(i, k + 1) and (k + 1, j) in Gk.

Part I: Basic algorithms Graphs

Transitive closure with dynamic programming

Ideas:
Number the vertices 1, 2, ..., n

We’ll compute G∗ in rounds, starting from G.

In round k+1: Gk → Gk+1

We start with all edges in Gk, and we add a new edge
(i, j) for every pair of vertices such that i can reach j
going only through vertices 1, 2, ..., k, k + 1.

How does a path (i, j) that goes only through
1, 2, ..., k, k + 1 look like? (i....j), (i..., k + 1,j)

When does it exist? When (i, j) exists in Gk, or
(i, k + 1) and (k + 1, j) both exist in Gk

This comes down to checking, if there exist edges
(i, k + 1) and (k + 1, j) in Gk.

Part I: Basic algorithms Graphs

Transitive closure with dynamic programming

Idea 1: Number the vertices 1, 2, ..., n
Idea 2: Consider paths that only use vertices numbered
1, 2, ..., k as intermediate vertices.

Lemma

A path from vi to vj that uses vertices numbered
v1, v2, ..., vk, vk+1 either:

does not include vertex Vk+1: is a path from vi to vj

that uses vertices numbered v1, v2, ..., vk; or

includes vertex vk+1: is a path from vi to vk+1 that uses
vertices numbered v1, v2, ..., vk; and a path from vk+1 to
vj that uses vertices numbered v1, v2, ..., vk.

Part I: Basic algorithms Graphs

Transitive closure with dynamic programming

Floyd-Warshall’s algorithm:

G0 = G

for k = 1 to n

Gk = Gk−1

for i = 1..n (i 6= k) and j = 1..n (j 6= i, k):
if edge (vi, vj) exists in Gk−1, then add edge (vi, vj)
to Gk

else: if both edges (vi, vk) and (vk, vj) exist in Gk−1,
then add edge (vi, vj) to Gk

Lemma

Gn represents the TC of G.

Paths in Gn contain all possible vertices and more iterations will not change Gn.

Analysis: if G is represented by adjacency matrix: O(n3)

Part I: Basic algorithms Graphs

Transitive closure with dynamic programming

Floyd-Warshall’s algorithm:

G0 = G

for k = 1 to n

Gk = Gk−1

for i = 1..n (i 6= k) and j = 1..n (j 6= i, k):
if edge (vi, vj) exists in Gk−1, then add edge (vi, vj)
to Gk

else: if both edges (vi, vk) and (vk, vj) exist in Gk−1,
then add edge (vi, vj) to Gk

Lemma

Gn represents the TC of G.

Paths in Gn contain all possible vertices and more iterations will not change Gn.

Analysis: if G is represented by adjacency matrix: O(n3)

Part I: Basic algorithms Graphs

Transitive closure with dynamic programming

Floyd-Warshall’s algorithm:

G0 = G

for k = 1 to n

Gk = Gk−1

for i = 1..n (i 6= k) and j = 1..n (j 6= i, k):
if edge (vi, vj) exists in Gk−1, then add edge (vi, vj)
to Gk

else: if both edges (vi, vk) and (vk, vj) exist in Gk−1,
then add edge (vi, vj) to Gk

Lemma

Gn represents the TC of G.

Paths in Gn contain all possible vertices and more iterations will not change Gn.

Analysis: if G is represented by adjacency matrix: O(n3)

Part I: Basic algorithms Graphs

Transitive closure

Two algorithms:

Run BFS from each vertex:
O(V (V + E)) = O(n(n + m))

Floyd-Warshall: O(n3)

Which one is better, when?

Part I: Basic algorithms Graphs

Topological order

Definition

A topological ordering of G is an ordering v1, v2, ..., vn of its
vertices such that for any edge (vi, vj) in G, vi < vj in the
order.

A topological order is an order such that any directed path
traverses the vertices in increasing order.

There may be more than one topological orderings.

Part I: Basic algorithms Graphs

Topological order

Lemma

If a digraph G admits a topological ordering then it is
acyclic.

Proof idea: Assume by contradiction that G contains a cycle. Let vi, vj two

vertices on this cycle. Then vi reaches vj and vj reaches vi. This means that vi

must come before vj , and vj must come before vi in the ordering. Contradiction.

Part I: Basic algorithms Graphs

Topological order

Lemma

If a digraph G is acyclic then it admits a topological
ordering.

Proof:
(1) If a graph is acyclic, there must be a vertex of indegree 0: Assume by
contradiction that this is not true. If all vertices have indegree ≥ 1, we could
travel from a vertex v using one of its incoming edge, x← v, and from x using one
of its incoming edges, and so on, and we could do this indefinitely since all vertices
have at least one incoming edge. There’s only a finite number of vertices, so there
must be a cycle. Contradiction.

(2) Let v be a vertex of indegree 0. We put v first in topological order, and delete
all its outgoing edges from G: For each (v, u), decrement indegree(u). The
remaining graph G− {v} is still acyclic. Repeat.

Part I: Basic algorithms Graphs

Topological order

Theorem

A digraph G admits a topological ordering if and only if G
is acyclic.

Algorithm:

for each v ∈ V : compute indegree(v)

L = {v ∈ V |indegree(v) = 0}
while L not empty :

delete a vertex from L (doesn’t matter which one).
Call it v.
v is the next vertex in topological ordering
for every edge (v, u): decrement indegree(u); if
indegree(u)==0 insert u in L.

Analysis: O(V + E)

Part I: Basic algorithms Graphs

Topological order

Theorem

A digraph G admits a topological ordering if and only if G
is acyclic.

Algorithm:

for each v ∈ V : compute indegree(v)

L = {v ∈ V |indegree(v) = 0}
while L not empty :

delete a vertex from L (doesn’t matter which one).
Call it v.
v is the next vertex in topological ordering
for every edge (v, u): decrement indegree(u); if
indegree(u)==0 insert u in L.

Analysis: O(V + E)

Part I: Basic algorithms Graphs

