
Rod cutting
(CLRS 15.1)

The problem: We have a long steel rod and we need to cut it into shorter rods which we then
sell. Each cut is free and all our rod lengths are always integers. Assume we know, for each
i = 1, 2, 3, ..., the price pi in dollars that we can sell a rod of length i.

Given a rod of length n inches and a table of prices pi for i = 1, 2, 3, ..., n, determine the maximal
revenue rn obtainable by cutting up the rod and selling the pieces.

Example: Find the maximal revenue r10 obtainable with the prices below.

length 1 2 3 4 5 6 7 8 9 10
price pi 1 5 8 9 19 17 17 20 24 30

Notation. We denote by rn the maximal revenue obtainable by cutting up the rod.

First steps: Draw all possible ways a rod of length n can be cut for n = 1, 2, 3, 4. Write down
the revenue of the cut in each case.

n = 1

n = 2

n = 3

n = 4

1

Question: How manny different cuts for a rod of length n?
Answer: You have the choice of n − 1 cuts —you can cut at distance 1, 2, ..., n − 1 from the

beginning of the rod. Can view each cut as a binary variable, with values 0 (no cut) or 1 (cut).
There are 2n−1 different combinations. Each one corresponds to a different way to cut the rod (but
note that two different cuts might result in the same set of rods, and thus have the same cost).

Recursive formulation: Assume someone told us that the first (left-most) cut in the optimal
solution was at distance i from the beginning; thus the first piece has length i. Then it has to be
that rn = pi + rn−i. In other words, the optimal revenue consists of pi plus the optimal revenue for
the remaining rod. Basically this says that if we want maximal revenue for a rod of length n, once
we determined a cut we want maximal revenue for the remaining piece.

Thus we see that the problem has optimal substructure: the optimal solution consists of optimal
solutions to sub-problems.

We don’t know where the first (leftmost) cut is, so we have to consider all options: the first cut
can be at distance 1 from the start, or at distance 2, or 3,, or n (in this case, there is no cut).
The maximal revenue is the largest revenue obtainable by one of these choices. Thus we get

rn = max{p1 + rn−1, p2 + rn−2,, pi + rn−i, , , , pn−1 + r1, pn}

Implementation: Write down pseudo-code that finds the maximal revenue rn:

int cut_rod(p, n)

2

Draw the recursion tree for n = 4.

Analysis: Write a recurrence for the running time T (n) of your recursive algorithm cut rod(p, n)
and show that it is exponential T (n) = Ω(2n).

Question: Why is cut rod(p, n) so inneficient?
Answer: It solves teh same sub-problems repeatedly..

3

Improving the solution with Dynamic programming:

4

