
Dynamic Programming: Matrix chain multiplication
(CLRS 15.2)

1 The problem

Given a sequence of matrices A1, A2, A3, ..., An, find the best way (using the minimal number of
multiplications) to compute their product.

• Isn’t there only one way? ((· · · ((A1 ·A2) ·A3) · · ·) ·An)

• No, matrix multiplication is associative.
e.g. A1 · (A2 · (A3 · (· · · (An−1 ·An) · · ·))) yields the same matrix.

• Different multiplication orders do not cost the same:

– Multiplying p× q matrix A and q × r matrix B takes p · q · r multiplications; result is a
p× r matrix.

– Consider multiplying 10× 100 matrix A1 with 100× 5 matrix A2 and 5× 50 matrix A3.

– (A1 ·A2) ·A3 takes 10 · 100 · 5 + 10 · 5 · 50 = 7500 multiplications.

– A1 · (A2 ·A3) takes 100 · 5 · 50 + 10 · 50 · 100 = 75000 multiplications.

2 Notation

• In general, let Ai be pi−1 × pi matrix.

• Let m(i, j) denote minimal number of multiplications needed to compute Ai ·Ai+1 · · ·Aj

• We want to compute m(1, n).

3 Recursive algorithm

• Assume that someone tells us the position of the last product, say k. Then we have to
compute recursively the best way to multiply the chain from i to k, and from k + 1 to j, and
add the cost of the final product. This means that

m(i, j) = m(i, k) + m(k + 1, j) + pi−1 · pk · pj

• If noone tells us k, then we have to try all possible values of k and pick the best solution.

1



• Recursive formulation of m(i, j):

m(i, j) =

{
0 If i = j
mini≤k<j{m(i, k) + m(k + 1, j) + pi−1 · pk · pj} If i < j

• To go from the recursive formulation above to a program is pretty straightforward:

Matrix-chain(i, j)

IF i = j THEN return 0

m =∞
FOR k = i TO j − 1 DO

q = Matrix-chain(i, k) + Matrix-chain(k + 1, j) +pi−1 · pk · pj
IF q < m THEN m = q

OD

Return m

END Matrix-chain

Return Matrix-chain(1, n)

• Running time:

T (n) =
n−1∑
k=1

(T (k) + T (n− k) + O(1))

= 2 ·
n−1∑
k=1

T (k) + O(n)

≥ 2 · T (n− 1)

≥ 2 · 2 · T (n− 2)

≥ 2 · 2 · 2 . . .
= 2n

• Exponential is ... SLOW!

• Problem is that we compute the same result over and over again.

– Example: Recursion tree for Matrix-chain(1, 4)

2,2 3,4 2,3 4,4 1,1 2,2

1,4

1,1 2,4 4,41,2 3,4

3,3 4,4 1,1 1,2 3,32,3

1,3

3,3 4,4 2,2 3,3 2,2 3,3 1,1 2,2

2



For example, we compute Matrix-chain(3, 4) twice.

4 Dynamic programming with a table and recursion

• Solution is to “remember” the values we have already computed in a table. This is called
memoization. We’ll have a table T[1..n][1..n] such that T[i][j] stores the solution to problem
Matrix-CHAIN(i,j). Initially all entries will be set to ∞.

FOR i = 1 to n DO

FOR j = i to n DO

T [i][j] =∞
OD

OD

• The code for MATRIX-CHAIN(i,j) stays the same, except that it now uses the table. The first
thing MATRIX-CHAIN(i,j) does is to check the table to see if T [i][j] is already computed.
Is so, it returns it, otherwise, it computes it and writes it in the table. Below is the updated
code.

Matrix-chain(i, j)

IF T [i][j] <∞ THEN return T [i][j]

IF i = j THEN T [i][j] = 0, return 0

m =∞
FOR k = i to j − 1 DO

q = Matrix-chain(i, k) + Matrix-chain(k + 1, j)+pi−1 · pk · pj
IF q < m THEN m = q

OD

T [i][j] = m

return m

END Matrix-chain

return Matrix-chain(1, n)

• The table will prevent a subproblem MATRIX-CHAIN(i,j) to be computed more than once.

• Running time:

– Θ(n2) different calls to matrix-chain(i, j).

– The first time a call is made it takes O(n) time, not counting recursive calls.

– When a call has been made once it costs O(1) time to make it again.
⇓
O(n3) time

– Another way of thinking about it: Θ(n2) total entries to fill, it takes O(n) to fill one.

3



5 Dynamic Programming without recursion

• Often dynamic programming is presented as filling up a table from the bottom, in such a
way that makes recursion unnecessary. Avoiding recursion is perhaps elegant, and necessary
20-30 years ago when programming languages did not include support for recursion.

• Personally, I like top-down recursive thinking, and I think compilers are pretty effective at
optimizing recursion.

• Solution for Matrix-chain without recursion: Key is that m(i, j) only depends on m(i, k) and
m(k + 1, j) where i ≤ k < j ⇒ if we have computed them, we can compute m(i, j)

– We can easily compute m(i, i) for all 1 ≤ i ≤ n (m(i, i) = 0)

– Then we can easily compute m(i, i + 1) for all 1 ≤ i ≤ n− 1
m(i, i + 1) = m(i, i) + m(i + 1, i + 1) + pi−1 · pi · pi+1

– Then we can compute m(i, i + 2) for all 1 ≤ i ≤ n− 2
m(i, i + 2) = min{m(i, i) + m(i + 1, i + 2) + pi−1 · pi · pi+2,m(i, i + 1) + m(i + 2, i + 2) +
pi−1 · pi+1 · pi+2}
...

– Until we compute m(1, n)

– Computation order:

1 2 3 4 5 76

1

1

1

1

1

1

1

2

2

2

2

2

3

3

3

4

4

4

4

5

5

5

6

6

71

2

3

4

5

6

7

2 3

3

i

j

− Computation order

• Program:

4



FOR i = 1 to n DO

T [i][i] = 0

OD
FOR l = 1 to n− 1 DO

FOR i = 1 to n− l DO

j = i + l

T [i][j] =∞
FOR k = 1 to j − 1 DO

q = T [i][k] + T [k + 1][j] + pi−1 · pk · pj
IF q < T [i[j] THEN T [i][j] = q

OD

OD

OD

• Analysis: O(n2) entries, O(n) time to compute each ⇒ O(n3).

6 Extensions

Above we only computed the best way to multiply the chain (with the smallest number of opera-
tions). The algorithm can be extended to compute the actual order of multiplications corresponding
to this optimal cost (we’ll do this as homework or in-class exercise).

This is a simplification that is often done: focus on computing the optimal cost, and leave the
details of computing the solution corresponding to that optimal cost for later.

5


