Dynamic Programming: Matrix chain multiplication
(CLRS 15.2)

1 The problem

Given a sequence of matrices A, Ag, As, ..., Ay, find the best way (using the minimal number of
multiplications) to compute their product.

e Isn’t there only one way? ((---((A;-A2)-Az)---)-Ap)

e No, matrix multiplication is associative.

eg. Ar-(Ag-(As- (- (Ap—1-Ay)--+))) yields the same matrix.
e Different multiplication orders do not cost the same:

— Multiplying p x ¢ matrix A and ¢ X r matrix B takes p - ¢ - r multiplications; result is a
p X r matrix.

— Consider multiplying 10 x 100 matrix A; with 100 x 5 matrix Ay and 5 x 50 matrix As.
— (A - Ag) - A3 takes 10-100- 54 10 - 5 - 50 = 7500 multiplications.
— A; - (Ag - A3) takes 100 -5 - 50 + 10 - 50 - 100 = 75000 multiplications.

2 Notation

e In general, let A; be p;_1 X p; matrix.
e Let m(i,j) denote minimal number of multiplications needed to compute A; - A;yq1--- A;

e We want to compute m(1,n).

3 Recursive algorithm

e Assume that someone tells us the position of the last product, say k. Then we have to
compute recursively the best way to multiply the chain from ¢ to k, and from k4 1 to j, and
add the cost of the final product. This means that

m(Z,j) = m(27k) +m(k+ 17]) + Pi—1 - Pk Py

e If noone tells us k, then we have to try all possible values of k and pick the best solution.



e Recursive formulation of m(3, j):

mi gy =10 Ifi=j
T\ mingcpe {mi, k) + mlk + 1,5) +pict - pe-pj} i <

e To go from the recursive formulation above to a program is pretty straightforward:

MATRIX-CHAIN(%, j)

IF ¢ = 5 THEN return 0

m = o0

FOR k=i TO j—1DO
q = MATRIX-CHAIN(%, k) + MATRIX-CHAIN(k + 1, j) +pi—1 - Pk - Dj
IF ¢ < m THEN m = ¢

OD

Return m

END MATRIX-CHAIN

Return MATRIX-CHAIN(1,n)

e Running time:

i
L

T(n) =

(]

(T(k)+T(n—Fk)+0O(1))

I

]

i
L

T(k) 4+ O(n)

x>
Il
—_

2-T(n—1)
2.2.T(n—2)
2.2:-2...

AVARAVARY

e Exponential is ... SLOW!
e Problem is that we compute the same result over and over again.

— Example: Recursion tree for MATRIX-CHAIN(1,4)
14

N
AL AN

22 34 23 44 11 22 33 44 ll 23 12 33

/N /N

33 44 22 33 22 33 11 22



For example, we compute MATRIX-CHAIN(3,4) twice.

4 Dynamic programming with a table and recursion

e Solution is to “remember” the values we have already computed in a table. This is called
memoization. We'll have a table T[1..n][1..n] such that T[i][j] stores the solution to problem
Matrix-CHAIN(i,j). Initially all entries will be set to oo.

FOR i=1ton DO
FOR j =i ton DO
7)) = oo
OD

OD

e The code for MATRIX-CHAIN(i,j) stays the same, except that it now uses the table. The first
thing MATRIX-CHAIN(i,j) does is to check the table to see if T[i][j] is already computed.
Is so, it returns it, otherwise, it computes it and writes it in the table. Below is the updated
code.

MATRIX-CHAIN(%, j)
IF Ti][j] < oo THEN return 7'[7][j]
IF i = j THEN TYi][j] = 0, return 0
m = o0
FOR k=itoj—1DO
q = MATRIX-CHAIN(Z, k) + MATRIX-CHAIN(k + 1, j)+pi—1 - Dk - Dj
IF ¢ <m THEN m = ¢

T[i][j] = m
return m

END MATRIX-CHAIN

return MATRIX-CHAIN(1,n)

e The table will prevent a subproblem MATRIX-CHAIN(i,j) to be computed more than once.
e Running time:

— ©(n?) different calls to MATRIX-CHAIN(i, j).
— The first time a call is made it takes O(n) time, not counting recursive calls.

— When a call has been made once it costs O(1) time to make it again.

!
O(n?3) time
— Another way of thinking about it: ©(n?) total entries to fill, it takes O(n) to fill one.



5 Dynamic Programming without recursion

e Often dynamic programming is presented as filling up a table from the bottom, in such a
way that makes recursion unnecessary. Avoiding recursion is perhaps elegant, and necessary
20-30 years ago when programming languages did not include support for recursion.

e Personally, I like top-down recursive thinking, and I think compilers are pretty effective at
optimizing recursion.

e Solution for Matrix-chain without recursion: Key is that m(i, j) only depends on m(i, k) and
m(k + 1,7) where i <k < j = if we have computed them, we can compute m(i, )

— We can easily compute m(i,4) for all 1 <i <n (m(i,i) =0)

— Then we can easily compute m(i,i + 1) forall 1 <i<n-—1
m(i,i+1) =m(i, i) + m(i+ 1,94+ 1) + pi—1 - pi - Pit1

— Then we can compute m(i,i+2) forall 1 <i<mn—2
m(i,i+2) = min{m(i,7) + m(i + 1,0+ 2) + pi—1 - pi - pita, m(i,i+ 1) + m(i+ 2,4+ 2) +
Pi—1 " Pi+1 " Piv2}

— Until we compute m(1,n)

— Computation order:

- Computation orde

-
N
LS R

PN w|»>] o

~ o o o~ W N R
PN a0 o]
PN | w|s|a|o|~N

e Program:



FOR i =1 ton DO
Ti][z] =0
OD
FORI=1ton—-1DO
FORi=1ton—-1DO
j=i+1
T[i][j] = o0
FORk=1toj—1DO
q = T[i][k] + Tk + 1][j] + pi-1 - Pk - P;
IF ¢ < T[i[j] THEN Ti][j] = ¢
OD
OD

OD

e Analysis: O(n?) entries, O(n) time to compute each = O(n?).

6 Extensions

Above we only computed the best way to multiply the chain (with the smallest number of opera-
tions). The algorithm can be extended to compute the actual order of multiplications corresponding
to this optimal cost (we’ll do this as homework or in-class exercise).

This is a simplification that is often done: focus on computing the optimal cost, and leave the
details of computing the solution corresponding to that optimal cost for later.



