
In-class work: Longest common subsequence (LCS)

(CLRS 15.4)

A classical dynamic-programming problem.

Intro: Biological applications need to compare DNA sequences. A strand of DNA consists of a
string of molecules which are one of four possible bases: adenine, guanine, cytosine and thymine.
Thus DNA strands can be expressed as arrays or strings over four symbols, A,C, G, T (standing
for adenine, guanine, cytosine and thymine).

Notation/definition:

• Suppose we have two sequences (arrays) X[1..n] and Y [1..m], where each of X[i], Y [i] are one
of the four bases A,C, G, T .

• We say that another sequence Z[1..k] is a sub-sequence if X if there exists a strictly increasing
sequence of indices i1, i2, i3, ..., ik such that we have X[i1] = Z[1], X[i2] = Z[2], ..., X[ik] =
Z[k].

• We say that Z is a common subsequence (of X, Y ) if Z is a subsequence of both X and Y .

The problem: Given two sequences X and Y of size n and m respectively, find their longest
common subsequence (LCS).

Example: Let X = [A,B, C, B, D,A,B], Y = [B,D,C,A, B,A].

1. List some common subsequences of length 2.

2. List some common subsequences of length 3.

1



3. Can you find a common subsequence of length 4? 5?

4. Sketch a brute-force algorithm for finding LCS(X, Y ). For example you could enumerate all
possibilities—-How many possibilities are there?

You don’t need to write this in detail, just sketch the idea and find it’s running time.

Now we’ll come up with a recursive formulation of LCS(X, Y ).

More notation: For any sequence X[1..n] let Xi denote the sequence consisting of the first
i elements of X (usually called the i-prefix): Xi = X[1..i].

Let Z[1..k] be the LCS of X, Y .

5. Case 1: If X[n] == Y [m]: what can you say about the last symbol of Z, Z[k]?

And, what can you say about Z = [Zk−1, Z[k]]? Express it recursively in terms of Xn−1 and
Ym−1.

2



6. Case 2 (a): If X[n]! = Y [m] and Z[k] 6= X[n]: Express Z recursively (for e.g. in terms of
Xn−1 etc).

Z = LCS(?, ?)

7. Case 2 (b): If X[n]! = Y [m] and Z[k] 6= Y [m]: Express Z recursively (for e.g. in terms of
Yn−1 etc).

Z = LCS(?, ?)

8. Case 2 above assumed you know the last symbol of Z. But the thing is, you don’t know Z,
that’s precisely what you are trying to compute. Still, we made progress: What does Case
2(a) and Case 2(b) suggest about computing Z(X, Y ) (when X[n] 6= Y [m])?

9. We are now ready to write the recursive algorithm for LCS. For simplicity, we’ll start by
computing only the length of the LCS of X, Y . Then we’ll extend the solution to compute
not only the length, but the actual LCS.

Notation: Denote c(i,j) the length of the LCS of Xi and Yj.

With this notation, we want to compute c(n, m).

Start by writing the base case:

c(i, 0) =?

c(0, j) =?

3



10. If X[n] == Y [m]: Express c(i, j) recursively.

c(i, j) =

11. If X[n] 6= Y [m]: Express c(i, j) recursively.

c(i, j) =

12. Write pseudo-code for a recursive algorithm that computes the length of LCS(X,Y) (that is,
c(i, j) as per notation above).

13. Analyze the running time of your algorithm (assume it does NOT use dynamic programming)
and argue that it is exponential.

4



14. Describe how you can improve the running time of your algorithm using dynamic program-
ming. Analyse the new running time.

15. How would you extend your algorithm above to compute the LCS not just the length?

5



16. Consider the following example:

X = [A,B, C, B, D,A,B], Y = [B,D,C,A, B,A]

Draw the table and show how it’s filled when calling your dynamic programming function to
compute c(7, 6).

6


