
Dynamic Programming
(CLRS 15)

Today we discuss a technique called ”dynamic programming”. The term “programming” refers
to using a table to cache solutions to subproblems. Using a table for storing and retrieving values
was, at that time, reminiscent of “programming”. Today this connotation is gone but the term
dynamic programming has stayed and is a classical technique.

Dynamic programming is generally used for optimization problems: these are problems that
have many solutions, each solution has a value, and the goal is to compute the best solution—
either the largest or smallest. We’ll see examples.

Usually the solutions to these problems are expressed recursively. That is, you solve some
subproblems and them combine the solutions. This is a little different than divide-and-conquer:
with divide-and-conquer you partition the problem into disjoint subproblems. In general, when
writing recursive algorithms, the recursive subproblems are not necessarily disjoint— they may
overlap. Thus one will end up solving the same subproblem more than one time and incur an
unnecessary cost. These are precisely the cases when dynamic programming can be used.

The idea of dynamic is to use a table to “cache” the solutions to subproblems, in order to avoid
recomputing them.

The hardest part of using the dynamic programming technique is finding the recursive structure
of the problem and coming up with a recursive solution.

We will discuss dynamic programming by looking at a few examples.

1 Warm-up: Winning a board game

A game-board consists of a row of n fields, each consisting of two numbers. The first number can
be any positive integer, while the second is 1, 2, or 3. An example of a board with n = 6 could be
the following:

17 2 100 87 33 14

1 2 3 1 1 1

The object of the game is to jump from the first to the last field in the row. The top number
of a field is the cost of visiting that field. The bottom number is the maximal number of fields one
is allowed to jump to the right from the field. The cost of a game is the sum of the costs of the
visited fields. The goal is to compute the cheapest game.

1



Notation. We make the following notation: Let the board be represented two arrays Cost[1..n]
and Jump[1..n]. Let Cheapest(i) represent the cost of the cheapest game starting at position i.

When called with argument i = 1, Cheapest(1) computes the cost of the cheapest game starting
at teh beginning and thus is the solution we are looking for.

Towards the solution. We are on the board at position i and depending on the value of Jump[i]
we have a couple of choices:

• if Jump[i] = 1 then we need to jump to the next position i + 1 and add Cost[i] to the cost of
this solution.

• if Jump[i] = 2 then we have two choices: we can either jump to position i + 1 or i + 2, and
continue looking for the cheapest game from there. In either case we need to add Cost[i] to
the cost of this solution.

• if Jump[i] = 3 then we have three choices: we can either jump to position i + 1 or i + 2 or
i + 3, and continue looking for the cheapest game from there. In either case we need to add
Cost[i] to the cost of this solution.

When we are in the situation to make a choice, we need to evaluate each option’s cost, and pick
the best one (in this case, the smallest cost).

A recursive solution. The following procedure implements this:

Cheapest(i)

IF i>n THEN return 0

x=Cost[i]+Cheapest(i+1)

y=Cost[i]+Cheapest(i+2)

z=Cost[i]+Cheapest(i+3)

IF Jump[i]=1 THEN return x

IF Jump[i]=2 THEN return min(x,y)

IF Jump[i]=3 THEN return min(x,y,z)

END Cheapest

Analysis: What is the asymptotic running time of the procedure?
Let T (n) be the worst-case time to find the cheapest game (starting at position 1) on a board

of size n. This is a recursive procedure, so we’ll use a recurrence relation.

T (n) = T (n− 1) + T (n− 2) + T (n− 3) + Θ(1)

Solving this recurrence may be tricky, but by looking at it our intuition tells us it is too slow.
We’ll prove this by showing a lower bound for T (n):

2



T (n) = T (n− 1) + T (n− 2) + T (n− 3) + Θ(1)
≥ 3 T (n− 3)
= 32 T (n− 6)
= . . .

= 3k T (n− 3k)
≥ 3n/3

= Ω(3n/3).

This is exponenitial. Not good.

A more efficient algorithm. Is it possible to find a better algorithm? Some algorithms are
exponential and no-one has been able to find faster (polynomial) solutions —- these problems are
believed to not have polynomial solutions (so called NP-complete problems, we’ll talk about this
later).

Let’s try and understand why the running time of Cheapest(i) is exponential: How many
different sub-problems can there be? That is, for a given n, how many different Cheapest(i) can
there be? Only n.

To get some intuition, draw the recurrence tree for a board of size 3 with the second row values
all equal to 3. You’ll see that there are a lot of overlapping subproblems and a subproblem may be
“solved” many times.

We create a table (an array) T of size n in which to store our results of prior runs. T [i] stores
the result of Cheapest(i). We initialize the table with say 0.

The modified algorithm would be as follows:

Cheapest(i)

IF T[i] != ∅ THEN return T[i] <——— if it’s been calculated already, retrieve it

IF i>n THEN return 0

x=Cost[i]+Cheapest(i+1)

y=Cost[i]+Cheapest(i+2)

z=Cost[i]+Cheapest(i+3)

IF Jump[i]=1 THEN answer = x

IF Jump[i]=2 THEN answer = min(x,y)

IF Jump[i]=3 THEN answer = min(x,y,z)

T[i] = answer <—— store it

return T[i]

END Cheapest

Analysis: The cost of a recursive call is O(1) and we fill each entry in the table at most once,
so the running time is O(n).

3


