
In-class work: The divide-and-conquer technique

(CLRS 4.1: The maximum sub-array problem)

The maximum partial sum (MPS) problem is defined as follows. Given an array A of n integers,
find values of i and j with 0 ≤ i ≤ j < n such that

A[i] + A[i + 1] + ... + A[j] =
j∑

k=i

A[k]

is maximized.

Example: For A = [4,−5, 6, 7, 8,−10, 5], the solution to MPS is i = 2 and j = 4 (6+7+8 = 21).

(1) Consider the following array:

A = [13,−3,−25, 20,−3,−16,−23, 18, 20,−7, 12,−5,−22, 15,−4, 7]

Try to find MPS by hand. This will give an example of how MPS can include negative numbers.

(2) Describe an algorithm to find the MPS and analyze its running time. We’ll refer to this as
the simple, or straightforward algorithm.

1

As always, the question is: Can we do better? For e.g., can we solve MPS in O(n lg n) time?
As it turns out, a very neat O(n lg n) algorithm for MPS is possible via divide-and-conquer.

We’ll come up with it in a few steps.

(3) First, we consider the left position ` maximal partial sum problem (LMPS`). Here the left
index is given and the problem is to find the index j (` ≤ j < n) such that

A[`] + A[` + 1] + ... + A[j] =
j∑

k=`

A[k]

is maximized.
Example: For the array [4,-5,6,7,8,-10,5] the solution to LMPS3 is j = 4 (7 + 8 = 15).

Describe an O(n) time algorithms for solving LMPS` (given A and `).

(4) Similarly, the right position r maximal partial sum problem (RMPSr), consists of finding
value i (0 ≤ i ≤ r) such that

A[i] + A[i + 1] + ... + A[r] =
r∑

k=i

A[k]

is maximized.
Example: For A = [4,−5, 6, 7, 8,−10, 5] the solution to RMPS6 is i = 2 (5−10+8+7+6 = 16).

Describe an O(n) time algorithms for solving RMPSr (given A and r).

2

(5) Using the algorithm for LMPS`, describe a simple O(n2) algorithm for MPS.

(6) Using O(n) time algorithms for LMPS` and RMPSr, describe an O(n log n) divide-and-
conquer algorithm for solving MPS.

3

