
Divide-and-conquer

(CLRS 4.2)

It’s a powerful technique for solving problems:

Divide-and-Conquer (Input: Problem P)

To Solve P:

1. Divide P into smaller problems P1, P2

2. Conquer by solving the (smaller) subproblems recursively.

3. Combine solutions to P1, P2 into solution for P.

Matrix Multiplication

Let X and Y be two n× n matrices

X =

x11 x12 · · · x1n
x21 x22 · · · x1n
x31 x32 · · · x1n
· · · · · · · · · · · ·
xn1 xn2 · · · xnn

We want to compute Z = X · Y , where zij =

∑n
k=1Xik · Ykj

Problem: Given two matrices of size n by n, come up with an algorithm to compute the product.

• The straightfoward method uses ⇒ n2 · n = Θ(n3) operations

• Can we do better? That is, is it possible to multiply two matrices faster than Θ(n3)?

• This was an open problem for a long time... until Strassen came up with an algorithm in
1969. The idea is to use divide-and-conquer.

Matrix multiplication with divide-and-conquer

• Let’s imagine that n is a power of two. We can view each matrix as consisting of 2x2=4
n/2-by-n/2 matrices.

X =

{
A B
C D

}
, Y =

{
E F
G H

}

1

• Then we see that their product X · Y can be written as:{
A B
C D

}
·
{

E F
G H

}
=

{
(A · E + B ·G) (A · F + B ·H)
(C · E + D ·G) (C · F + D ·H)

}

• The above naturally leads to divide-and-conquer solution:

– Divide X and Y into 8 sub-matrices A, B, C, D,E, F,G,H.

– Compute 8 n/2-by-n/2 matrix multiplications recursively.

– Combine results (by doing 4 matrix additions) and copy the results into Z.

• ANALYSIS: Running time of algorithm is given by T (n) = 8T (n/2)+Θ(n2)⇒ T (n) = Θ(n3)

• Cool idea, but not so cool result......since we already discussed a (simpler/naive) O(n3) algo-
rithm!

• Can we do better?

Strassen’s divide-and-conquer

• Strassen’s algorithm is based on the following observation:

The recurrence
T (n) = 8T (n/2) + Θ(n2)⇒ T (n) = Θ(n3)

while the recurrence

T (n) = 7T (n/2) + Θ(n2)⇒ T (n) = Θ(nlg 7)

• Strassen foud a way to compute only 7 products of n/2-by-n/2 matrices

• With same notation as before, we define the following 7 n/2-by-n/2 matrices:

S1 = (B −D) · (G + H)

S2 = (A + D) · (E + H)

S3 = (A− C) · (E + F)

S4 = (A + B) ·H
S5 = A · (F −H)

S6 = D · (G− E)

S7 = (C + D) · E

• Strassen observed that we can write the product Z as:

Z =

{
A B
C D

}
·
{

E F
G H

}
=

{
(S1 + S2 − S4 + S6) (S4 + S5)

(S6 + S7) (S2 + S3 + S5 − S7)

}

2

• For e.g. let’s test that S6 + S7 is really C · E + D ·G

S6 + S7 = D · (G− E) + (C + D) · E
= DG−DE + CE + DE

= DG + CE

• This leads to a divide-and-conquer algorithm:

– Divide X and Y into 8 sub-matrices A, B, C, D,E, F,G,H.

– Compute S1, S2, S3, ..., S7. This involves 10 matrix additions and 7 multiplications re-
cursively.

– Compute S1 + S2 − S4 + S6, ... and copy them in Z. This step involves only addi-
tions/subtractions of n/2-by-n/2 matrices.

• ANALYSIS: T (n) = 7T (n/2) + Θ(n2), with solution O(nlg 7).

• Lets solve the recurrence using the iteration method

T (n) = 7T (n/2) + n2

= n2 + 7(7T (
n

22
) + (

n

2
)2)

= n2 + (
7

22
)n2 + 72T (

n

22
)

= n2 + (
7

22
)n2 + 72(7T (

n

23
) + (

n

22
)2)

= n2 + (
7

22
)n2 + (

7

22
)2 · n2 + 73T (

n

23
)

= n2 + (
7

22
)n2 + (

7

22
)2n2 + (

7

22
)3n2.... + (

7

22
)logn−1n2 + 7logn

=
logn−1∑
i=0

(
7

22
)in2 + 7logn

= n2 ·Θ((
7

22
)logn−1) + 7logn

= n2 ·Θ(
7logn

(22)logn
) + 7logn

= n2 ·Θ(
7logn

n2
) + 7logn

= Θ(7logn)

– Now we have the following:

7logn = 7
log7 n

log7 2

= (7log7 n)(1/ log7 2)

3

= n(1/ log7 2)

= n
log2 7

log2 2

= nlog 7

So the solution is T (n) = Θ(nlg 7) = Θ(n2.81...)

• Note:

– We are ’hiding’ a much bigger constant in Θ() than before.

– Currently best known bound is O(n2.376..) (Coppersmith and Winograd’78).

– Lower bound is (trivially) Ω(n2).

– Big open problem!!

– Strassen’s algorithm has been found to be efficient in practice once n is large enough.
For small values of n the straightforward cubic algorithm is used instead. The crossover
point where Strassen becomes more efficient depends from system to system.

4

