Divide-and-conquer
(CLRS 4.2)

It’s a powerful technique for solving problems:
Divide-and-Conquer (Input: Problem P)

To Solve P:
1. Divide P into smaller problems P, Py
2. Congquer by solving the (smaller) subproblems recursively.

3. Combine solutions to P, P, into solution for P.

Matrix Multiplication

Let X and Y be two n X n matrices

T11 T12 o Tin
To1 T2 - Tin
X =4 ®31 X323 -+ T
Tnl Tp2 - Tnn

We want to compute Z = X - Y, where z;; = > 11 Xii - Vi
Problem: Given two matrices of size n by n, come up with an algorithm to compute the product.

e The straightfoward method uses = n? - n = ©(n?) operations
e Can we do better? That is, is it possible to multiply two matrices faster than ©(n3)?

e This was an open problem for a long time... until Strassen came up with an algorithm in
1969. The idea is to use divide-and-conquer.
Matrix multiplication with divide-and-conquer

e Let’s imagine that n is a power of two. We can view each matrix as consisting of 2x2=4
n/2-by-n/2 matrices.

(e n{z)

Then we see that their product X - Y can be written as:
AB|JE F|_)((AE+B-G) (A-F+B-H)
C D G H| | (C-E+D-G) (C-F+D-H)

The above naturally leads to divide-and-conquer solution:

— Divide X and Y into 8 sub-matrices A, B, C, D,E, F,G, H.
— Compute 8 n/2-by-n/2 matrix multiplications recursively.

— Combine results (by doing 4 matrix additions) and copy the results into Z.

ANALYSIS: Running time of algorithm is given by T'(n) = 8T(n/2)+©0(n?) = T(n) = O(n?)

Cool idea, but not so cool result......since we already discussed a (simpler/naive) O(n?) algo-
rithm!

e Can we do better?

Strassen’s divide-and-conquer

e Strassen’s algorithm is based on the following observation:

The recurrence
T(n) = 8T(n/2) + O(n?) = T(n) = O(n?)

while the recurrence
T(n)="7T(n/2)+ @(n2) =T(n)= G)(nlg7)

e Strassen foud a way to compute only 7 products of n/2-by-n/2 matrices

e With same notation as before, we define the following 7 n/2-by-n/2 matrices:

S; = (B-D)-(G+H)

S, = (A+D)-(E+H)
S = (A-C)-(E+F)
Sy = (A+B)-H
S5 = A-(F—H)
Ss = D-(G—E)

e Strassen observed that we can write the product Z as:

Z_{A B}.{E F}_{(sl+sg—s4+sﬁ) (S4 + S5) }
a C D G H o (S6+S7) (SQ+53—|-S5—S7)

For e.g. let’s test that S¢ + Sy isreally C-E+ D -G

Ss+Sr = D-(G—E)+(C+D)-E
— DG - DE+CE+ DE
DG +CE

This leads to a divide-and-conquer algorithm:

— Divide X and Y into 8 sub-matrices 4, B, C, D, E, F,G, H.

— Compute Si, 59,53, ...,57. This involves 10 matrix additions and 7 multiplications re-
cursively.

— Compute S; + So — Sg + S, ... and copy them in Z. This step involves only addi-
tions/subtractions of n/2-by-n/2 matrices.

ANALYSIS: T(n) = 7T(n/2) + ©(n?), with solution O(n'87).

Lets solve the recurrence using the iteration method

T(n) = 7T(n/2)+n?

2 n Nyo
= T(— b
n + (7T (o) + (5)°)
7 n
= ”2+(?)”2+72T(2*2)
7 n n
= 02+ (e + TT() + (55)?)
7 7 n
= (i + ()7 n® + TT(5)
7 7 7
_ n2+(72)”2+(72)2”24_(72)3n2.'_.+(12)logn—ln2+7logn
2 2 2 2
logn—1
7 7 n
=) (gp)ne T
=0
_ 2) 7 logn—1 7logn
= 02 O((5)) +
7logn
_ 2 logn
= n @(W)_i_ g
5 logn |
= n @(?)+7Ogn
— @(7logn)
— Now we have the following:
logz n
710gn — 7log72

(7log7n)(1/log7 2)

_ (1/1ogr2)
logo 7
nlog2 2

nlog 7

So the solution is T'(n) = O(n'87) = ©(n281-)

e Note:

— We are ’hiding’ a much bigger constant in ©() than before.
2.376..) (

Currently best known bound is O(n Coppersmith and Winograd’78).

Lower bound is (trivially) (n?).

— Big open problem!!

Strassen’s algorithm has been found to be efficient in practice once n is large enough.
For small values of n the straightforward cubic algorithm is used instead. The crossover
point where Strassen becomes more efficient depends from system to system.

