Divide-and-conquer

(CLRS 4.2)

It's a powerful technique for solving problems:

Divide-and-Conquer (Input: Problem P)

To Solve P:

- 1. Divide P into smaller problems P_1, P_2
- 2. Conquer by solving the (smaller) subproblems recursively.
- 3. Combine solutions to P_1, P_2 into solution for P.

Matrix Multiplication

Let X and Y be two $n \times n$ matrices

$$X = \left\{ \begin{array}{cccc} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{1n} \\ x_{31} & x_{32} & \cdots & x_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nn} \end{array} \right\}$$

We want to compute $Z = X \cdot Y$, where $z_{ij} = \sum_{k=1}^{n} X_{ik} \cdot Y_{kj}$

Problem: Given two matrices of size n by n, come up with an algorithm to compute the product.

- The straightfoward method uses $\Rightarrow n^2 \cdot n = \Theta(n^3)$ operations
- Can we do better? That is, is it possible to multiply two matrices faster than $\Theta(n^3)$?
- This was an open problem for a long time... until Strassen came up with an algorithm in 1969. The idea is to use divide-and-conquer.

Matrix multiplication with divide-and-conquer

• Let's imagine that n is a power of two. We can view each matrix as consisting of 2x2=4 n/2-by-n/2 matrices.

1

$$X = \left\{ \begin{array}{cc} A & B \\ C & D \end{array} \right\}, Y = \left\{ \begin{array}{cc} E & F \\ G & H \end{array} \right\}$$

• Then we see that their product $X \cdot Y$ can be written as:

$$\left\{ \begin{array}{c} A & B \\ C & D \end{array} \right\} \cdot \left\{ \begin{array}{c} E & F \\ G & H \end{array} \right\} = \left\{ \begin{array}{c} (A \cdot E + B \cdot G) & (A \cdot F + B \cdot H) \\ (C \cdot E + D \cdot G) & (C \cdot F + D \cdot H) \end{array} \right\}$$

- The above naturally leads to divide-and-conquer solution:
 - Divide X and Y into 8 sub-matrices A, B, C, D, E, F, G, H.
 - Compute 8 n/2-by-n/2 matrix multiplications recursively.
 - Combine results (by doing 4 matrix additions) and copy the results into Z.
- ANALYSIS: Running time of algorithm is given by $T(n) = 8T(n/2) + \Theta(n^2) \Rightarrow T(n) = \Theta(n^3)$
- Cool idea, but not so cool result......since we already discussed a (simpler/naive) $O(n^3)$ algorithm!
- Can we do better?

Strassen's divide-and-conquer

• Strassen's algorithm is based on the following observation:

The recurrence

$$T(n) = 8T(n/2) + \Theta(n^2) \Rightarrow T(n) = \Theta(n^3)$$

while the recurrence

$$T(n) = 7T(n/2) + \Theta(n^2) \Rightarrow T(n) = \Theta(n^{\lg 7})$$

- Strassen foud a way to compute only 7 products of n/2-by-n/2 matrices
- With same notation as before, we define the following 7 n/2-by-n/2 matrices:

$$S_1 = (B - D) \cdot (G + H)$$

 $S_2 = (A + D) \cdot (E + H)$
 $S_3 = (A - C) \cdot (E + F)$
 $S_4 = (A + B) \cdot H$
 $S_5 = A \cdot (F - H)$
 $S_6 = D \cdot (G - E)$
 $S_7 = (C + D) \cdot E$

 \bullet Strassen observed that we can write the product Z as:

$$Z = \left\{ \begin{array}{cc} A & B \\ C & D \end{array} \right\} \cdot \left\{ \begin{array}{cc} E & F \\ G & H \end{array} \right\} = \left\{ \begin{array}{cc} (S_1 + S_2 - S_4 + S_6) & (S_4 + S_5) \\ (S_6 + S_7) & (S_2 + S_3 + S_5 - S_7) \end{array} \right\}$$

• For e.g. let's test that $S_6 + S_7$ is really $C \cdot E + D \cdot G$

$$S_6 + S_7 = D \cdot (G - E) + (C + D) \cdot E$$
$$= DG - DE + CE + DE$$
$$= DG + CE$$

- This leads to a divide-and-conquer algorithm:
 - Divide X and Y into 8 sub-matrices A, B, C, D, E, F, G, H.
 - Compute $S_1, S_2, S_3, ..., S_7$. This involves 10 matrix additions and 7 multiplications recursively.
 - Compute $S_1 + S_2 S_4 + S_6$, ... and copy them in Z. This step involves only additions/subtractions of n/2-by-n/2 matrices.
- ANALYSIS: $T(n) = 7T(n/2) + \Theta(n^2)$, with solution $O(n^{\lg 7})$.
- Lets solve the recurrence using the iteration method

$$\begin{split} T(n) &=& 7T(n/2) + n^2 \\ &= n^2 + 7(7T(\frac{n}{2^2}) + (\frac{n}{2})^2) \\ &= n^2 + (\frac{7}{2^2})n^2 + 7^2T(\frac{n}{2^2}) \\ &= n^2 + (\frac{7}{2^2})n^2 + 7^2(7T(\frac{n}{2^3}) + (\frac{n}{2^2})^2) \\ &= n^2 + (\frac{7}{2^2})n^2 + (\frac{7}{2^2})^2 \cdot n^2 + 7^3T(\frac{n}{2^3}) \\ &= n^2 + (\frac{7}{2^2})n^2 + (\frac{7}{2^2})^2n^2 + (\frac{7}{2^2})^3n^2.... + (\frac{7}{2^2})^{\log n - 1}n^2 + 7^{\log n} \\ &= \sum_{i=0}^{\log n - 1} (\frac{7}{2^2})^i n^2 + 7^{\log n} \\ &= n^2 \cdot \Theta((\frac{7}{2^2})^{\log n - 1}) + 7^{\log n} \\ &= n^2 \cdot \Theta(\frac{7^{\log n}}{(2^2)^{\log n}}) + 7^{\log n} \\ &= n^2 \cdot \Theta(\frac{7^{\log n}}{n^2}) + 7^{\log n} \\ &= \Theta(7^{\log n}) \end{split}$$

- Now we have the following:

$$7^{\log n} = 7^{\frac{\log_7 n}{\log_7 2}}$$
$$= (7^{\log_7 n})^{(1/\log_7 2)}$$

$$= n^{(1/\log_7 2)}$$

$$= n^{\frac{\log_2 7}{\log_2 2}}$$

$$= n^{\log 7}$$

So the solution is $T(n) = \Theta(n^{\lg 7}) = \Theta(n^{2.81...})$

• Note:

- We are 'hiding' a much bigger constant in $\Theta()$ than before.
- Currently best known bound is $O(n^{2.376..})$ (Coppersmith and Winograd'78).
- Lower bound is (trivially) $\Omega(n^2)$.
- Big open problem!!
- Strassen's algorithm has been found to be efficient in practice once n is large enough. For small values of n the straightforward cubic algorithm is used instead. The crossover point where Strassen becomes more efficient depends from system to system.