
In-class work: The D=divide-and-conquer technique

The maximum partial sum (MPS) problem is defined as follows. Given an array A of n integers,
find values of i and j with 0 ≤ i ≤ j < n such that

A[i] + A[i + 1] + ... + A[j] =
j∑

k=i

A[k]

is maximized.

Example: For A = [4,−5, 6, 7, 8,−10, 5], the solution to MPS is i = 2 and j = 4 (6+7+8 = 21).

(1) Consider the following array:

A = [13,−3,−25, 20,−3,−16,−23, 18, 20,−7, 12,−5,−22, 15,−4, 7]

Try to find MPS by hand. This will give an example of how MPS can include negative numbers.

(2) Describe a (straightforward) algorithm to find the MPS and analyze its running time.

1



As always, the question is: Can we do better? For e.g., can we solve MPS in O(n lg n) time?
As it turns out, a very neat O(n lg n) algorithm for MPS is possible via divide-and-conquer.

We’ll come up with it in a few steps.

(3) First, we consider the left position ` maximal partial sum problem (LMPS`). Here the left
index is given and the problem is to find the index j with ` ≤ j ≤ n such that

j∑
k=`

A[k]

is maximized.
Example: For the array [4,-5,6,7,8,-10,5] the solution to e.g. LMPS3 is j = 4 (7 + 8 = 15).
Describe O(n) time algorithms for solving LMPS` for given `.

(4) Similarly, the right position r maximal partial sum problem (RMPSr), consists of finding
value i with 1 ≤ i ≤ r such that

r∑
k=i

A[k]

is maximized.
Example: For the array [4,-5,6,7,8,-10,5] the solution to e.g. RMPS6 is i = 2 (5−10+8+7+6 =

16).
Describe O(n) time algorithms for solving RMPSr for given r.

(5) Using an O(n) time algorithm for LMPS`, describe a simple O(n2) algorithm for solving
MPS.

2



(6) Using O(n) time algorithms for LMPS` and RMPSr, describe an O(n log n) divide-and-
conquer algorithm for solving MPS.

3


