In-class work: The D=divide-and-conquer technique

The maximum partial sum (MPS) problem is defined as follows. Given an array A of n integers, find values of i and j with $0 \le i \le j < n$ such that

$$
A[i] + A[i+1] + \dots + A[j] = \sum_{k=i}^{j} A[k]
$$

is maximized.

Example: For $A = [4, -5, 6, 7, 8, -10, 5]$, the solution to MPS is $i = 2$ and $j = 4$ (6+7+8 = 21).

(1) Consider the following array:

$$
A = [13, -3, -25, 20, -3, -16, -23, 18, 20, -7, 12, -5, -22, 15, -4, 7]
$$

Try to find MPS by hand. This will give an example of how MPS can include negative numbers.

(2) Describe a (straightforward) algorithm to find the MPS and analyze its running time.

As always, the question is: Can we do better? For e.g., can we solve MPS in $O(n \lg n)$ time?

As it turns out, a very neat $O(n \lg n)$ algorithm for MPS is possible via divide-and-conquer. We'll come up with it in a few steps.

(3) First, we consider the *left position* ℓ *maximal partial sum* problem $(LMPS_{\ell})$. Here the left index is given and the problem is to find the index j with $\ell \leq j \leq n$ such that

$$
\sum_{k=\ell}^j A[k]
$$

is maximized.

Example: For the array [4,-5,6,7,8,-10,5] the solution to e.g. $LMPS_3$ is $j = 4$ (7 + 8 = 15). Describe $O(n)$ time algorithms for solving $LMPS_{\ell}$ for given ℓ .

(4) Similarly, the right position r maximal partial sum problem $(RMPS_r)$, consists of finding value i with $1 \leq i \leq r$ such that

$$
\sum_{k=i}^{r} A[k]
$$

is maximized.

Example: For the array [4,-5,6,7,8,-10,5] the solution to e.g. $RMPS_6$ is $i = 2(5-10+8+7+6)$ 16).

Describe $O(n)$ time algorithms for solving $RMPS_r$ for given r.

(5) Using an $O(n)$ time algorithm for $LMPS_{\ell}$, describe a simple $O(n^2)$ algorithm for solving MPS .

(6) Using $O(n)$ time algorithms for $LMPS_{\ell}$ and $RMPS_r$, describe an $O(n \log n)$ divide-andconquer algorithm for solving MPS .