
Linear Time Selection
(CLRS 9)

The selection problem is the following: Given an array A of n elements and a value i (1 ≤ i ≤ n), find
ith smallest element in an array. This element is called the element of rank = i.

For simplicity, we assume the elements are distinct.

Select(A, i): returns the i’th smallest element in A

Note that for i = 1 we want the minimum element, and for i = n we want the maximum element. The
element of rank i = n/2 is called the median.

• How fast can you find the ith smallest element?

• Straightforward algorithm: Sort and return A[i]. O(n lg n)

• Can we do better?

• Let’s look at some special cases of Select(i)

– Minimum or maximum can easily be found in n− 1 comparisons

∗ Scan through elements maintaining minimum/maximum

– Second largest/smallest element can be found in (n− 1) + (n− 2) = 2n− 3 comparisons

∗ Find and remove minimum/maximum

∗ Find minimum/maximum

– Median:

∗ Using the above idea repeatedly we can find the median in time
∑n/2

i=1(n−i) = n2/2−
∑n/2

i=1 i =
n2/2− (n/2 · (n/2 + 1))/2 = Θ(n2)

∗ We can easily design Θ(n log n) algorithm using sorting

• Can we design O(n) time algorithm for general i?

• If we could partition nicely (which is what we are really trying to do) we could solve the problem

– by partitioning and then recursively looking for the element in one of the partitions:

1

Select(A, p, r, i)

IF p = r THEN RETURN A[p]
q=Partition(A, p, r)

���
���
���
���

p r

q

 q−p+1

k = q − p+ 1
IF i ≤ k THEN

RETURN Select(A, p, q, i)

ELSE

RETURN Select(A, q + 1, r, i− k)

FI

Select i’th elements using Select(A, 1, n, i)

– If the partition was perfect (q = n/2) we have

T (n) = T (n/2) + n

= n+ n/2 + n/4 + n/8 + · · ·+ 1

=

logn∑
i=0

n

2i

= n ·
logn∑
i=0

(
1

2
)i

≤ n ·
∞∑
i=0

(
1

2
)i

= Θ(n)

2

Note:

∗ The trick is that we only recurse on one side.

∗ In the worst case the algorithm runs in T (n) = T (n− 1) + n = Θ(n2) time.

∗ We could use randomization to get good expected partition.

∗ Even if we just always partition such that a constant fraction (α < 1) of the elements are

eliminated we get running time T (n) = T (αn) + n = n
∑logn

i=0 αi = Θ(n).

• It turns out that we can modify the algorithm and get T (n) = Θ(n) in the worst case

– The idea is to find a split element q such that we always eliminate a fraction of the elements:

Select(i)

∗ Divide n elements into groups of 5

∗ Select median of each group (⇒ dn5 e selected elements)

∗ Use Select recursively to find median q of selected elements

∗ Partition all elements based on q

������

q

n−kk

∗ Use Select recursively to find i’th element

· If i ≤ k then use Select(i) on k elements

· If i > k then use Select(i− k) on n− k elements

– If n′ is the maximal number of elements we recurse on in the last step of the algorithm the running
time is given by T (n) = Θ(n) + T (dn5 e) + Θ(n) + T (n′)

• Estimation of n′:

– Consider the following figure of the groups of 5 elements

∗ An arrow between element e1 and e2 indicates that e1 > e2

∗ The dn5 e selected elements are drawn solid (q is median of these)

∗ Elements > q are indicated with box

q

> q

3

– Number of elements > q is larger than 3(1
2d

n
5 e − 2) ≥ 3n

10 − 6

∗ We get 3 elements from each of 1
2d

n
5 e columns except possibly the one containing q and the

last one.

– Similarly the number of elements < q is larger than 3n
10 − 6

⇓
We recurse on at most n′ = n− (3n

10 − 6) = 7
10n+ 6 elements

• So Selection(i) runs in time T (n) = Θ(n) + T (dn5 e) + T (7
10n+ 6)

• Solution to T (n) = n+ T (dn5 e) + T (7
10n+ 6):

– Guess T (n) ≤ cn
– Induction:

T (n) = n+ T (dn
5
e) + T (

7

10
n+ 6)

≤ n+ c · dn
5
e+ c · (7

10
n+ 6)

≤ n+ c
n

5
+ c+

7

10
cn+ 6c

=
9

10
cn+ n+ 7c

≤ cn

If 7c+ n ≤ 1
10cn which can be satisfied (e.g. true for c = 20 if n > 140)

– Note: It is important that we chose every 5’th element, not all other choices will work (homework)
(Note: This algorithm gives ∼ 16n comparisons. Best know ∼ 2.95n. Best lower bound > 2n).

Selection and Quicksort

• Recall that the running time of Quicksort depends on how good the partition is

– Best case (q = n/2): T (n) = 2T (n/2) + Θ(n)⇒ T (n) = Θ(n log n).

– Worst case (q = 1): T (n) = T (1) + T (n− 1) + Θ(n)⇒ T (n) = Θ(n2).

– Expected case for randomized algorithm: Θ(n log n)

• In Quicksort: if we could find element e such that rank(e) = n/2 (the median) in O(n) time we could
make quick-sort run in Θ(n log n) time worst case.

– We could just exchange e with last element in A in beginning of Partition and thus make sure
that A is always partition in the middle

4

