Linear Time Selection
(CLRS 9)

The selection problem is the following: Given an array A of n elements and a value i (1 < i < n), find
ith smallest element in an array. This element is called the element of rank = i.
For simplicity, we assume the elements are distinct.

’ SELECT(A,4): returns the ¢’th smallest element in A

Note that for ¢ = 1 we want the minimum element, and for i« = n we want the mazrimum element. The
element of rank i = n/2 is called the median.

e How fast can you find the ith smallest element?

o Straightforward algorithm: Sort and return A[i]. O(nlgn)
e Can we do better?

e Let’s look at some special cases of SELECT(¢)

— Minimum or maximum can easily be found in n — 1 comparisons
* Scan through elements maintaining minimum/maximum
— Second largest/smallest element can be found in (n — 1) 4+ (n — 2) = 2n — 3 comparisons

* Find and remove minimum/maximum

* Find minimum/maximum
— Median:
n/2 .

* Using the above idea repeatedly we can find the median in time Z?:/f(n—z) =n?/2-Y"1i=
n?/2—(n/2-(n/2+1))/2 = O(n?)
*x We can easily design O(nlogn) algorithm using sorting

e Can we design O(n) time algorithm for general 47
e If we could partition nicely (which is what we are really trying to do) we could solve the problem

— by partitioning and then recursively looking for the element in one of the partitions:

SELECT(A, p,7,1%)

IF p = r THEN RETURN A[p]
q=PARTITION(A, p,T)

P r

| |
| g
| [
= gptl—=
k=qg—p+1
IF ¢« < k THEN
RETURN SELECT(A,p, q,1)
ELSE
RETURN SELECT(A,q + 1,7,i — k)
FI

Select i’th elements using SELECT(A, 1,n, 1)

— If the partition was perfect (¢ = n/2) we have

Tn) = Tn/2)+n

= n+n/2+n/d+n/8+---

logn

Note:

The trick is that we only recurse on one side.

In the worst case the algorithm runs in T'(n) = T'(n — 1) +n = O(n?) time.
We could use randomization to get good expected partition.

* K X X

Even if we just always partition such that a constant fraction (o < 1) of the elements are

climinated we get running time T'(n) = T(an) + n =n Y 28" of = O(n).

e It turns out that we can modify the algorithm and get T'(n) = ©(n) in the worst case

— The idea is to find a split element ¢ such that we always eliminate a fraction of the elements:

SELECT(%)
x Divide n elements into groups of 5
* Select median of each group (= [%] selected elements)

* Use SELECT recursively to find median g of selected elements
x Partition all elements based on ¢
|]
k n—-k—=

*

Use SELECT recursively to find i’th element
- If ¢ <k then use SELECT(7) on k elements
- If ¢ > k then use SELECT(i — k) on n — k elements

— If n/ is the maximal number of elements we recurse on in the last step of the algorithm the running
time is given by T'(n) = ©(n) + T([%]) + ©(n) + T'(n')

e Estimation of n':

— Consider the following figure of the groups of 5 elements

x An arrow between element e; and e, indicates that e; > eo

* The [2] selected elements are drawn solid (g is median of these)

* Elements > ¢ are indicated with box

— Number of elements > g is larger than 3(3[2] —2) > 32 — ¢

* We get 3 elements from each of %(%1 columns except possibly the one containing ¢ and the

last one.
— Similarly the number of elements < ¢ is larger than %L —
I
We recurse on at most n’ =n — (32 — 6) = Ln + 6 elements

e So SELECTION(i) runs in time T'(n) = ©(n) + T([2]) + T(:5n + 6)
e Solution to T'(n) =n + T([2]) + T(i5n + 6):

— Guess T'(n) < cn

— Induction:
n 7
T(n) = n+T((g])+T(1—0n+6)

n 7

< L= o

< n+c f5]+c (10n—|—6)

< n+cﬁ+c+lcn+6c

- 5 10

= Dentnat

= 10cn n c

< cn

If7c+n< %cn which can be satisfied (e.g. true for ¢ = 20 if n > 140)

— Note: It is important that we chose every 5’th element, not all other choices will work (homework)
(Note: This algorithm gives ~ 16n comparisons. Best know ~ 2.95n. Best lower bound > 2n).

Selection and Quicksort

e Recall that the running time of Quicksort depends on how good the partition is
— Best case (¢ =n/2): T(n) =2T(n/2) + O(n) = T(n) = O(nlogn).
— Worst case (g=1): T(n) =T(1) +T(n —1) + O(n) = T(n) = O(n?).
— Expected case for randomized algorithm: ©(nlogn)

e In Quicksort: if we could find element e such that rank(e) = n/2 (the median) in O(n) time we could
make quick-sort run in ©(nlogn) time worst case.

— We could just exchange e with last element in A in beginning of PARTITION and thus make sure
that A is always partition in the middle

