
Quicksort
(CLRS 7)

• We saw the divide-and-conquer technique at work resulting in Mergesort

• Mergesort summary:

– Partition n elements array A into two subarrays of n/2 elements each

– Sort the two subarrays recursively

– Merge the two subarrays

Running time: T (n) = 2T (n/2) + Θ(n)⇒ T (n) = Θ(n log n)

• Another possibility is to divide the elements such that there is no need of merging, that is

– Partition A[1...n] into subarrays A′ = A[1..q] and A” = A[q + 1...n] such that all
elements in A” are larger than all elements in A′.

– Recursively sort A′ and A”.

– (no need to to combine/merge. A already sorted after sorting A′ and A”)

• Pseudo code for Quicksort:

Quicksort(A, p, r)
IF p < r THEN

q=Partition(A, p, r)

Quicksort(A, p, q − 1)

Quicksort(A, q + 1, r)

Sort using Quicksort(A, 0, n− 1)

If q = n/2 and we divide in Θ(n) time, we again get the recurrence T (n) = 2T (n/2) + Θ(n)
for the running time ⇒ T (n) = Θ(n log n)

The problem is: can we develop a partition algorithm which always divide A in two halves?

Quicksort correctness:

– Assume that Partition works correctly (that can be shown separately). Quicksort
correctness can be shown, inductively.

1

Partition

Partition(A, p, r)
x = A[r]
i = p− 1
FOR j = p TO r − 1 DO

IF A[j] ≤ x THEN

i = i + 1

Exchange A[i] and A[j]

FI

OD
Exchange A[i + 1] and A[r]
RETURN i + 1

• Example:

2 7 3 5 6 4

2 8 7 1 3 5 6 4

2 8 7 1 3 5 6 4

2 8 7 1 3 5 6 4

2 8 7 1 3 5 6 4

1 8

2 5 671 3

2 5 6 4781 3

2 5 6 4781 3

2 5 6 4781 3

4 8

i=0, j=1

i=1, j=2

i=1, j=3

i=1, j=4

i=2, j=5

i=3, j=6

i=3, j=7

i=3, j=8

q=4

• Partition can be proved correct (by induction) using the loop invariants:

– A[k] ≤ x for p ≤ k ≤ i

– A[k] > x for i + 1 ≤ k ≤ j − 1

– A[k] = x for k = r

These are true before the execution of the loop, when i = p−1, j = p; and are true after every
execution of the loop. Thus at the end when j = p− 1 this means partition works correctly.

• Analysis: Partition runs in time Θ(r − p) (does one pass through the input)

quicksort analysis

• Running time depends on how well Partition divides A.

• In the example it does reasonably well.

2

• If array is always partitioned nicely in two halves (partition returns q = r−p
2), we have the

recurrence T (n) = 2T (n/2) + Θ(n)⇒ T (n) = Θ(n lg n).

• But, in the worst case Partition always returns q = p or q = r and the running time becomes
T (n) = Θ(n) + T (0) + T (n− 1)⇒ T (n) = Θ(n2).

• and what is maybe even worse, the worst case is when A is already sorted.

• So why is it called ”quick”-sort? Because it ”often” performs very well—can we theoretically
justify this?

• Even if all the splits are relatively bad, we get Θ(n log n) time:

• Example: Split is 9
10n, 1

10n.

T (n) = T (9
10n) + T (1

10n) + n

Solution: Θ(n lg n)

• Even if every otehr split is balanced, Quicksort still performs well (a bad split is absorbed
into a good split).

• Intuitively, there are A LOT of cases where quicksort will perform in Θ(n lg n) time. Can we
theoretically justify this?

Average running time

The natural question is: what is the average case running time of quicksort? Is it close to worst-
case (Θ(n2), or to the best case Θ(n lg n)? Average time depends on the distribution of inputs for
which we take the average.

• If we run quicksort on a set of inputs that are all almost sorted, the average running time
will be close to the worst-case.

• Similarly, if we run quicksort on a set of inputs that give good splits, the average running
time will be close to the best-case.

• If we run quicksort on a set of inputs which are picked uniformly at random from the space
of all possible input permutations, then the average case will also be close to the best-case.
Why? Intuitively, if any input ordering is equally likely, then we expect at least as many good
splits as bad splits, therefore on the average a bad split will be followed by a good split, and
it gets “absorbed” in the good split.

So, under the assumption that all input permutations are equally likely, the average time
of Quicksort is Θ(n lg n). This can be proved formally, but we won’t do it here.

Is is realistic to assume that all input permutations are equally likely?

• Not really. In many cases the input is almost sorted (e.g. rebuilding index in a database etc).

The question is: how can we make Quicksort have a good average time irrespective of the
input distribution? Using randomization.

3

Randomization

We consider what we call randomized algorithms, that is, algorithms that make some random choices
during their execution.

• Running time of normal deterministic algorithm only depend on the input.

• Running time of a randomized algorithm depends not only on input but also on the random
choices made by the algorithm.

• Running time of a randomized algorithm is not fixed for a given input!

• Randomized algorithms have best-case and worst-case running times, but the inputs for which
these are achieved are not known, they can be any of the inputs.

We are normally interested in analyzing the expected running time of a randomized algorithm,
that is, the expected (average) running time for all inputs of size n. Here T (X) denotes the running
time on input X (of size n)

Te(n) = E|X|=n[T (X)]

Randomized Quicksort

• We can enforce that all n! permutations are equally likely by randomly permuting the input
before the algorithm.

– Most computers have pseudo-random number generator random(1, n) returning “ran-
dom” number between 1 and n

– Using pseudo-random number generator we can generate a random permutation (such
that all n! permutations equally likely) in O(n) time:

Choose element in A[1] randomly among elements in A[1..n], choose element in A[2]
randomly among elements in A[2..n], choose element in A[3] randomly among elements
in A[3..n], and so on.

• Alternatively we can modify Partition slightly and exchange last element in A with random
element in A before partitioning.

RandPartition(A, p, r)
i=Random(p, r)
Exchange A[r] and A[i]
RETURN Partition(A, p, r)

RandQuicksort(A, p, r)
IF p < r THEN

q=RandPartition(A, p, r)

RandQuicksort(A, p, q − 1)

RandQuicksort(A, q + 1, r)

It can be shown that the expected running time of randomized quicksort (on inputs of size n)
is Θ(n lg n).

Next time we will see how to make quicksort run in worst-case O(n log n) time.

4

