Quicksort

(CLRS 7)

- We saw the divide-and-conquer technique at work resulting in Mergesort
- Mergesort summary:
 - Partition n elements array A into two subarrays of n/2 elements each
 - Sort the two subarrays recursively
 - Merge the two subarrays

Running time: $T(n) = 2T(n/2) + \Theta(n) \Rightarrow T(n) = \Theta(n \log n)$

- Another possibility is to divide the elements such that there is no need of merging, that is
 - Partition A[1...n] into subarrays A' = A[1..q] and A'' = A[q + 1...n] such that all elements in A' are larger than all elements in A'.
 - Recursively sort A' and A".
 - (no need to to combine/merge. A already sorted after sorting A' and A")
- Pseudo code for Quicksort:

QUICKSORT
$$(A, p, r)$$

IF $p < r$ THEN
q=Partition (A, p, r)
QUICKSORT $(A, p, q - 1)$
QUICKSORT $(A, q + 1, r)$

Sort using Quicksort (A, 0, n - 1)

If q = n/2 and we divide in $\Theta(n)$ time, we again get the recurrence $T(n) = 2T(n/2) + \Theta(n)$ for the running time $\Rightarrow T(n) = \Theta(n \log n)$

The problem is: can we develop a partition algorithm which always divide A in two halves?

QUICKSORT correctness:

- Assume that Partition works correctly (that can be shown separately). Quicksort correctness can be shown, inductively.

Partition

```
PARTITION(A, p, r)
x = A[r]
i = p - 1
FOR j = p TO r - 1 DO

IF A[j] \le x THEN
i = i + 1
Exchange A[i] and A[j]
FI

OD
Exchange A[i + 1] and A[r]
RETURN i + 1
```

• Example:

```
2 8 7 1 3 5 6 4
                        i=0, j=1
2 8 7 1 3 5 6 4
                        i=1, j=2
                        i=1, j=3
 2 8 7 1 3 5 6 4
                        i=1, j=4
 2 1 7 8 3 5 6 4
                        i=2, j=5
2 1 3 8 7 5 6 4
                        i=3, j=6
 2 1 3 8 7 5 6 4
                        i=3, j=7
 2 1 3 8 7 5 6 4
                        i=3, j=8
 2 1 3 4 7 5 6 8
```

• Partition can be proved correct (by induction) using the loop invariants:

```
-A[k] \le x \text{ for } p \le k \le i

-A[k] > x \text{ for } i+1 \le k \le j-1

-A[k] = x \text{ for } k = r
```

These are true before the execution of the loop, when i = p - 1, j = p; and are true after every execution of the loop. Thus at the end when j = p - 1 this means partition works correctly.

• Analysis: Partition runs in time $\Theta(r-p)$ (does one pass through the input)

QUICKSORT analysis

- Running time depends on how well Partition divides A.
- In the example it does reasonably well.

- If array is always partitioned nicely in two halves (partition returns $q = \frac{r-p}{2}$), we have the recurrence $T(n) = 2T(n/2) + \Theta(n) \Rightarrow T(n) = \Theta(n \lg n)$.
- But, in the worst case Partition always returns q = p or q = r and the running time becomes $T(n) = \Theta(n) + T(0) + T(n-1) \Rightarrow T(n) = \Theta(n^2)$.
- and what is maybe even worse, the worst case is when A is already sorted.
- So why is it called "quick"-sort? Because it "often" performs very well—can we theoretically justify this?
- Even if all the splits are relatively bad, we get $\Theta(n \log n)$ time:
- Example: Split is $\frac{9}{10}n$, $\frac{1}{10}n$.

$$T(n) = T(\frac{9}{10}n) + T(\frac{1}{10}n) + n$$

Solution: $\Theta(n \lg n)$

- Even if every otehr split is balanced, Quicksort still performs well (a bad split is absorbed into a good split).
- Intuitively, there are A LOT of cases where quicksort will perform in $\Theta(n \lg n)$ time. Can we theoretically justify this?

Average running time

The natural question is: what is the average case running time of QUICKSORT? Is it close to worst-case $(\Theta(n^2))$, or to the best case $\Theta(n \lg n)$? Average time depends on the distribution of inputs for which we take the average.

- If we run QUICKSORT on a set of inputs that are all almost sorted, the average running time will be close to the worst-case.
- Similarly, if we run QUICKSORT on a set of inputs that give good splits, the average running time will be close to the best-case.
- If we run QUICKSORT on a set of inputs which are picked uniformly at random from the space of all possible input permutations, then the average case will also be close to the best-case. Why? Intuitively, if any input ordering is equally likely, then we expect at least as many good splits as bad splits, therefore on the average a bad split will be followed by a good split, and it gets "absorbed" in the good split.

So, under the assumption that all input permutations are equally likely, the average time of QUICKSORT is $\Theta(n \lg n)$. This can be proved formally, but we won't do it here.

Is is realistic to assume that all input permutations are equally likely?

• Not really. In many cases the input is almost sorted (e.g. rebuilding index in a database etc).

The question is: how can we make QUICKSORT have a good average time irrespective of the input distribution? Using **randomization**.

Randomization

We consider what we call *randomized algorithms*, that is, algorithms that make some random choices during their execution.

- Running time of normal deterministic algorithm only depend on the input.
- Running time of a randomized algorithm depends not only on input but also on the random choices made by the algorithm.
- Running time of a randomized algorithm is not fixed for a given input!
- Randomized algorithms have best-case and worst-case running times, but the inputs for which these are achieved are not known, they can be any of the inputs.

We are normally interested in analyzing the *expected* running time of a randomized algorithm, that is, the expected (average) running time for all inputs of size n. Here T(X) denotes the running time on input X (of size n)

$$T_e(n) = E_{|X|=n}[T(X)]$$

Randomized Quicksort

- We can enforce that all n! permutations are equally likely by randomly permuting the input before the algorithm.
 - Most computers have pseudo-random number generator random(1, n) returning "random" number between 1 and n
 - Using pseudo-random number generator we can generate a random permutation (such that all n! permutations equally likely) in O(n) time:

 Choose element in A[1] randomly among elements in A[1..n], choose element in A[2] randomly among elements in A[3..n], and so on.
- Alternatively we can modify Partition slightly and exchange last element in A with random element in A before partitioning.

It can be shown that the expected running time of randomized quicksort (on inputs of size n) is $\Theta(n \lg n)$.

Next time we will see how to make quicksort run in worst-case $O(n \log n)$ time.