Mergesort and Recurrences
(CLRS 2.3, 4.4)

We saw a couple of O(n?) algorithms for sorting. Today we’ll see a different approach that runs
in O(nlgn) and uses one of the most powerful techniques for algorithm design, divide-and-conquer.
Outline:

1. Introduce the divide-and-conquer algorithm technique.
2. Discuss a sorting algorithm obtained using divide-and-conquer (mergesort).
3. Introduce reccurences as a means to express the running time of recursive algorithms.

4. Discuss iteration (recursion tree) as a way to solve a reccurrence.

1 Divide-and-conquer

Let’s say we want to solve a problem P. For e.g. P could be the problem of sorting an array, or
finding the smallest element in an array. Divide-and-conquer is an approach that can be applied
to any P and goes like this:

Divide-and-Conquer
To Solve P:
1. Divide P into two smaller problems P, Ps.
2. Conquer by solving the (smaller) subproblems recursively.

3. Combine solutions to P;, P, into solution for P.

The simplest way is to divide into two subproblems. Can be extended to divide into k subprob-

lems.
Analysis of divide-and-conquer algorithms and in general of recursive algorithms leads to recur-

rences.



2 MergeSort
A divide-and-conquer solution for sorting an array gives an algorithm known as mergesort:

e Mergesort:

— Divide: Divide an array of n elements into two arrays of n/2 elements each.
— Conquer: Sort the two arrays recursively.

— Combine: Merge the two sorted arrays.
e Assume we have procedure Merge(A, p, ¢, ) which merges sorted A[p..q] with sorted A[q+1....r]

e We can sort Alp...r| as follows (initially p=0 and r=n-1):

Merge Sort(A,p,r)

If p < r then
q=Lp+r)/2]
MergeSort(A,p,q)
MergeSort(A,q+1,r)
Merge(A,p,q,r)

e How does Merge(A, p, q,r) work?

— Imagine merging two sorted piles of cards. The basic idea is to choose the smallest of
the two top cards and put it into the output pile.
— Running time: O(r — p)

— Implementation is a bit messier.

2.1 Mergesort Correctness

e Merge: Why is merge correct? As you look at the next item to put into the merged output,
what has to be true?

e Assuming that Merge is correct, prove that Mergesort() is correct.

— Visualize the recursion tree of mergesort, sorting comes to down to a bunch of merges.
If merge works correctly, then mergesort works correctly.

— Formally, we need induction on n



2.2 Mergesort Example
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2.3

Mergesort Analysis

To simplify things, let us assume that n is a power of 2, i.e n = 2* for some k.

Running time of a recursive algorithm can be analyzed using a recurrence relation. Each
“divide” step yields two sub-problems of size n/2.

Let T'(n) denote the worst-case running time of mergesort on an array of n elements. We
have:

Tn) = c1+T(n/2)+T(n/2)+ can
= 2T(n/2) + (c1 + c2n)

Simplified, T'(n) = 2T (n/2) + ©(n)

We can see that the recurrence has solution ©(nlogyn) by looking at the recursion tree:
the total number of levels in the recursion tree is logs n 4+ 1 and each level costs linear time
(more below).

Note: If n # 2% the recurrence gets more complicated.

[ en) Ifn=1
T(n)—{ T(3)+T(5)+6(m) Ifn>1

But we are interested in the order of growth, not in the exact answer. So we first solve the
simple version (equivalent to assuming that n = 2F for some constant k, and leaving out base
case and constant in ©). Once we know the solution for the simple version, one needs to
solve the original recursion by induction. This step is necessary for a complete proof, but it
is rather mechanical, so it is usually skipped.

So even if we are “sloppy” with ceilings and floors, the solution is the same. We usually
assume n = 2F or whatever to avoid complicated cases.

3 Solving recurrences

The steps for solving a recurrence relation are the following:

1.

2.
3.

Draw the recursion tree to get a feel for how the recursion goes. Sometimes, for easy recur-
rences, it is sufficient to see the bound. This step can be skipped.

Iterate and solve the summations to get the final bound.

Use induction to prove this bound formally (substitution method).

In this incarnation of the class we will skip the induction step —- generally speaking this step
is pretty mechanical.
For us solving a recurrence will mean finding a theta-bound for 7'(n) by iteration.



3.1 Solving Recurrences via Recursion tree

e We draw out the recursion tree with cost of single call in each node—running time is sum of
costs in all nodes

e If you are careful drawing the recursion tree and summing up the costs, the recursion tree
gives you the solution of the recurrence

e Example: T'(n) = 8T (n/2) +n? (T(1) =1)
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4 Solving Recurrences by iteration

e Example: Solve T'(n) = 8T(n/2) +n? (with T(1) =1)

T(n) = n*>+8T(n/2)

= W8T () + (5))
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= n2+2n2+22n2+83T(§)

= n24+om?+ 2202 + 2202 + 242 4+ ...

— Recursion depth: How long (how many iterations) it takes until the subproblem has

constant size? i times where 5z =1 =1 = logn

— What is the last term? 8'T'(1) = 8logn

T(n) _ n2+2n2_|_22n2+23n2+24n2+‘..+210gn—1n2+810gn
logn—1
— Z an2+810gn
k=0
logn—1

— n2 Z 2k+(23)10gn
k=0

e Now Zfi(’;*l 2% is a geometric sum so we have Z}fﬁgil 2k — @(2lgm—1) = O(n)

® (23)logn — (210gn)3 — n3

T(n) = n?-0(n)+n?
0(n?)



5 Other recurrences
Some important/typical bounds on recurrences not covered by master method:

e Logarithmic: O(logn)

— Recurrence: T'(n) =1+ T(n/2)
— Typical example: Recurse on half the input (and throw half away)
— Variations: T'(n) = 1+ 7'(99n,/100)

e Linear: O(N)

— Recurrence: T'(n) =1+T(n —1)
— Typical example: Single loop
— Variations: T(n) =1+2T(n/2),T(n) =n+T(n/2),T(n) =T(n/5)+T("Tn/10+6)+n

e Quadratic: ©(n?)

— Recurrence: T'(n) =n+T(n —1)
— Typical example: Nested loops

e Exponential: ©(2")

— Recurrence: T'(n) = 2T (n — 1)



6 Optional

6.1 Master Method

e It is possible to come up with a formula for recurrences of the form 7'(n)
1). This is called the master method.

(T(1) =

— Merge-sort = T'(n)

4
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O(nlog, n)
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a = b
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Proof (by iteration )
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e Note: Book states and proves the result slightly differently.

6.2 Changing variables

Sometimes reucurrences can be reduced to simpler ones by changing variables

e Example: Solve T'(n) = 2T(y/n) + logn

Let m =logn = 2™ =n = \/n = 2™/2
T(n) =2T(y/n)+logn = T(2™) = 2T(2m/2) Tm

Let S(m) =T(2™)

T(2™) = 2T(2™/2) + m = S(m) = 25(m/2) +m
= S(m) = O(mlogm)
= T'(n)

T(2™) = S(m) = O(mlogm) = O(lognloglogn)



