# Mergesort and Recurrences

(CLRS 2.3, 4.4)

We saw a couple of  $O(n^2)$  algorithms for sorting. Today we'll see a different approach that runs in  $O(n \lg n)$  and uses one of the most powerful techniques for algorithm design, divide-and-conquer. Outline:

- 1. Introduce the divide-and-conquer algorithm technique.
- 2. Discuss a sorting algorithm obtained using divide-and-conquer (mergesort).
- 3. Introduce recurrences as a means to express the running time of recursive algorithms.
- 4. Discuss iteration (recursion tree) as a way to solve a reccurrence.

## 1 Divide-and-conquer

Let's say we want to solve a problem P. For e.g. P could be the problem of sorting an array, or finding the smallest element in an array. Divide-and-conquer is an approach that can be applied to any P and goes like this:

#### Divide-and-Conquer

To Solve P:

- 1. Divide P into two smaller problems  $P_1, P_2$ .
- 2. Conquer by solving the (smaller) subproblems recursively.
- 3. Combine solutions to  $P_1, P_2$  into solution for P.

The simplest way is to divide into two subproblems. Can be extended to divide into k subproblems.

Analysis of divide-and-conquer algorithms and in general of recursive algorithms leads to recurrences.

# 2 MergeSort

A divide-and-conquer solution for sorting an array gives an algorithm known as mergesort:

- Mergesort:
  - Divide: Divide an array of n elements into two arrays of n/2 elements each.
  - Conquer: Sort the two arrays recursively.
  - Combine: Merge the two sorted arrays.
- Assume we have procedure Merge(A, p, q, r) which merges sorted A[p..q] with sorted A[q+1...r]
- We can sort A[p...r] as follows (initially p=0 and r=n-1):

```
Merge Sort(A,p,r)

If p < r then
q = \lfloor (p+r)/2 \rfloor
MergeSort(A,p,q)
MergeSort(A,q+1,r)
Merge(A,p,q,r)
```

- How does Merge(A, p, q, r) work?
  - Imagine merging two sorted piles of cards. The basic idea is to choose the smallest of the two top cards and put it into the output pile.
  - Running time:  $\Theta(r-p)$
  - Implementation is a bit messier.

#### 2.1 Mergesort Correctness

- Merge: Why is merge correct? As you look at the next item to put into the merged output, what has to be true?
- Assuming that Merge is correct, prove that Mergesort() is correct.
  - Visualize the recursion tree of mergesort, sorting comes to down to a bunch of merges.
     If merge works correctly, then mergesort works correctly.
  - Formally, we need induction on n

# 2.2 Mergesort Example



#### 2.3 Mergesort Analysis

- To simplify things, let us assume that n is a power of 2, i.e  $n = 2^k$  for some k.
- Running time of a recursive algorithm can be analyzed using a **recurrence relation**. Each "divide" step yields two sub-problems of size n/2.
- Let T(n) denote the worst-case running time of mergesort on an array of n elements. We have:

$$T(n) = c_1 + T(n/2) + T(n/2) + c_2 n$$
  
=  $2T(n/2) + (c_1 + c_2 n)$ 

- Simplified,  $T(n) = 2T(n/2) + \Theta(n)$
- We can see that the recurrence has solution  $\Theta(n \log_2 n)$  by looking at the **recursion tree**: the total number of levels in the recursion tree is  $\log_2 n + 1$  and each level costs linear time (more below).
- Note: If  $n \neq 2^k$  the recurrence gets more complicated.

$$T(n) = \begin{cases} \Theta(1) & \text{If } n = 1\\ T(\lceil \frac{n}{2} \rceil) + T(\lfloor \frac{n}{2} \rfloor) + \Theta(n) & \text{If } n > 1 \end{cases}$$

But we are interested in the order of growth, not in the exact answer. So we first solve the simple version (equivalent to assuming that  $n=2^k$  for some constant k, and leaving out base case and constant in  $\Theta$ ). Once we know the solution for the simple version, one needs to solve the original recursion by induction. This step is necessary for a complete proof, but it is rather mechanical, so it is usually skipped.

So even if we are "sloppy" with ceilings and floors, the solution is the same. We usually assume  $n = 2^k$  or whatever to avoid complicated cases.

# 3 Solving recurrences

The steps for solving a recurrence relation are the following:

- 1. Draw the recursion tree to get a feel for how the recursion goes. Sometimes, for easy recurrences, it is sufficient to see the bound. This step can be skipped.
- 2. Iterate and solve the summations to get the final bound.
- 3. Use induction to prove this bound formally (substitution method).

In this incarnation of the class we will skip the induction step — generally speaking this step is pretty mechanical.

For us solving a recurrence will mean finding a theta-bound for T(n) by iteration.

### 3.1 Solving Recurrences via Recursion tree

- We draw out the recursion tree with cost of single call in each node—running time is sum of costs in all nodes
- If you are careful drawing the recursion tree and summing up the costs, the recursion tree gives you the solution of the recurrence
- Example:  $T(n) = 8T(n/2) + n^2$  (T(1) = 1)





$$T(n) = n^2 + 2n^2 + 2^2n^2 + 2^3n^2 + 2^4n^2 + \ldots + 2^{\log n - 1}n^2 + 8^{\log n} = \ldots = \Theta(n^3)$$

# 4 Solving Recurrences by iteration

• Example: Solve  $T(n) = 8T(n/2) + n^2$  (with T(1) = 1)

$$T(n) = n^{2} + 8T(n/2)$$

$$= n^{2} + 8(8T(\frac{n}{2^{2}}) + (\frac{n}{2})^{2})$$

$$= n^{2} + 8^{2}T(\frac{n}{2^{2}}) + 8(\frac{n^{2}}{4}))$$

$$= n^{2} + 2n^{2} + 8^{2}T(\frac{n}{2^{2}})$$

$$= n^{2} + 2n^{2} + 8^{2}(8T(\frac{n}{2^{3}}) + (\frac{n}{2^{2}})^{2})$$

$$= n^{2} + 2n^{2} + 8^{3}T(\frac{n}{2^{3}}) + 8^{2}(\frac{n^{2}}{4^{2}}))$$

$$= n^{2} + 2n^{2} + 2^{2}n^{2} + 8^{3}T(\frac{n}{2^{3}})$$

$$= \dots$$

$$= n^{2} + 2n^{2} + 2^{2}n^{2} + 2^{3}n^{2} + 2^{4}n^{2} + \dots$$

- Recursion depth: How long (how many iterations) it takes until the subproblem has constant size? i times where  $\frac{n}{2^i} = 1 \Rightarrow i = \log n$
- What is the last term?  $8^{i}T(1) = 8^{\log n}$

$$T(n) = n^{2} + 2n^{2} + 2^{2}n^{2} + 2^{3}n^{2} + 2^{4}n^{2} + \dots + 2^{\log n - 1}n^{2} + 8^{\log n}$$

$$= \sum_{k=0}^{\log n - 1} 2^{k}n^{2} + 8^{\log n}$$

$$= n^{2} \sum_{k=0}^{\log n - 1} 2^{k} + (2^{3})^{\log n}$$

- Now  $\sum_{k=0}^{\log n-1} 2^k$  is a geometric sum so we have  $\sum_{k=0}^{\log n-1} 2^k = \Theta(2^{\log n-1}) = \Theta(n)$
- $(2^3)^{\log n} = (2^{\log n})^3 = n^3$

$$T(n) = n^2 \cdot \Theta(n) + n^3$$
$$= \Theta(n^3)$$

### 5 Other recurrences

Some important/typical bounds on recurrences not covered by master method:

- Logarithmic:  $\Theta(\log n)$ 
  - Recurrence: T(n) = 1 + T(n/2)
  - Typical example: Recurse on half the input (and throw half away)
  - Variations: T(n) = 1 + T(99n/100)
- Linear:  $\Theta(N)$ 
  - Recurrence: T(n) = 1 + T(n-1)
  - Typical example: Single loop
  - Variations: T(n) = 1 + 2T(n/2), T(n) = n + T(n/2), T(n) = T(n/5) + T(7n/10 + 6) + n
- Quadratic:  $\Theta(n^2)$ 
  - Recurrence: T(n) = n + T(n-1)
  - Typical example: Nested loops
- Exponential:  $\Theta(2^n)$ 
  - Recurrence: T(n) = 2T(n-1)

### 6 Optional

### 6.1 Master Method

• It is possible to come up with a formula for recurrences of the form  $T(n) = aT(n/b) + n^c$  (T(1) = 1). This is called the *master method*.

- Merge-sort 
$$\Rightarrow T(n) = 2T(n/2) + n$$
 ( $a = 2, b = 2$ , and  $c = 1$ ).

$$T(n) = aT\left(\frac{n}{b}\right) + n^c \quad a \ge 1, b \ge 1, c > 0$$

$$\downarrow \downarrow$$

$$T(n) = \begin{cases} \Theta(n^{\log_b a}) & a > b^c \\ \Theta(n^c \log_b n) & a = b^c \\ \Theta(n^c) & a < b^c \end{cases}$$

Proof (by iteration)

$$T(n) = aT\left(\frac{n}{b}\right) + n^{c}$$

$$= n^{c} + a\left(\left(\frac{n}{b}\right)^{c} + aT\left(\frac{n}{b^{2}}\right)\right)$$

$$= n^{c} + \left(\frac{a}{b^{c}}\right)n^{c} + a^{2}T\left(\frac{n}{b^{2}}\right)$$

$$= n^{c} + \left(\frac{a}{b^{c}}\right)n^{c} + a^{2}\left(\left(\frac{n}{b^{2}}\right)^{c} + aT\left(\frac{n}{b^{3}}\right)\right)$$

$$= n^{c} + \left(\frac{a}{b^{c}}\right)n^{c} + \left(\frac{a}{b^{c}}\right)^{2}n^{c} + a^{3}T\left(\frac{n}{b^{3}}\right)$$

$$= \dots$$

$$= n^{c} + \left(\frac{a}{b^{c}}\right)n^{c} + \left(\frac{a}{b^{c}}\right)^{2}n^{c} + \left(\frac{a}{b^{c}}\right)^{3}n^{c} + \left(\frac{a}{b^{c}}\right)^{4}n^{c} + \dots + \left(\frac{a}{b^{c}}\right)^{\log_{b} n - 1}n^{c} + a^{\log_{b} n}T(1)$$

$$= n^{c}\sum_{k=0}^{\log_{b} n - 1}\left(\frac{a}{b^{c}}\right)^{k} + a^{\log_{b} n}$$

$$= n^{c}\sum_{k=0}^{\log_{b} n - 1}\left(\frac{a}{b^{c}}\right)^{k} + n^{\log_{b} a}$$

Recall geometric sum  $\sum_{k=0}^n x^k = \frac{x^{n+1}-1}{x-1} = \Theta(x^n)$ 

$$\bullet \quad a < b^c$$

$$\begin{aligned} a &< b^c \Leftrightarrow \frac{a}{b^c} < 1 \Rightarrow \sum_{k=0}^{\log_b n - 1} \left(\frac{a}{b^c}\right)^k \leq \sum_{k=0}^{+\infty} \left(\frac{a}{b^c}\right)^k = \frac{1}{1 - \left(\frac{a}{b^c}\right)} = \Theta(1) \\ a &< b^c \Leftrightarrow \log_b a < \log_b b^c = c \\ T(n) &= n^c \sum_{k=0}^{\log_b n - 1} \left(\frac{a}{b^c}\right)^k + n^{\log_b a} \\ &= n^c \cdot \Theta(1) + n^{\log_b a} \\ &= \Theta(n^c) \end{aligned}$$

 $\bullet$   $a = b^c$ 

$$\begin{array}{l} \bullet \quad \boxed{a > b^c} \\ a > b^c \Leftrightarrow \frac{a}{b^c} > 1 \Rightarrow \sum_{k=0}^{\log_b n - 1} \left(\frac{a}{b^c}\right)^k = \Theta\left(\left(\frac{a}{b^c}\right)^{\log_b n}\right) = \Theta\left(\frac{a^{\log_b n}}{(b^c)^{\log_b n}}\right) = \Theta\left(\frac{a^{\log_b n}}{n^c}\right) \\ T(n) &= n^c \cdot \Theta\left(\frac{a^{\log_b n}}{n^c}\right) + n^{\log_b a} \\ &= \Theta(n^{\log_b a}) + n^{\log_b a} \\ &= \Theta(n^{\log_b a}) \end{array}$$

• Note: Book states and proves the result slightly differently.

### 6.2 Changing variables

Sometimes reucurrences can be reduced to simpler ones by changing variables

• Example: Solve 
$$T(n) = 2T(\sqrt{n}) + \log n$$

Let 
$$m = \log n \Rightarrow 2^m = n \Rightarrow \sqrt{n} = 2^{m/2}$$
  
 $T(n) = 2T(\sqrt{n}) + \log n \Rightarrow T(2^m) = 2T(2^{m/2}) + m$   
Let  $S(m) = T(2^m)$   
 $T(2^m) = 2T(2^{m/2}) + m \Rightarrow S(m) = 2S(m/2) + m$   
 $\Rightarrow S(m) = O(m \log m)$   
 $\Rightarrow T(n) = T(2^m) = S(m) = O(m \log m) = O(\log n \log \log n)$