
Algorithms Lab 10

In lab

Prim’s algorithm. In class we talked about the high-level idea of Prim’s algorithm:

• Start from an arbitrary vertex v.
• Consider all edges with exactly one endpoint in the current tree and pick the one of

minimum weight; add it to T . Repeat.

To implement this, the main question is how to store the edges with one endpoint in T
so that we can select the minimum weight edge fast. Do you remember a data structure that
can give us the smallest/largest element fast? A priority queue! Main ideas:

• The priority queue will store all the vertices that are not in T yet;

• A vertex v in the PQ has priority equal to the weight of the minimum edge that
connects v with a vertex already in T . The other endpoint of this edge is stored in
visit(v).

• Essentially the priority queue stores all edges that cross the cut between the vertices
in T and the vertices in V − T (If a vertex not in T is connected by several edges to
vertices in T , the pq will store only one of these edges, the smallest).

• Initially T is empty and PQ contains all vertices in G with priority ∞, except an
arbitrary vertex v which has priority 0.

The textbook implementation is the following:

PRIM(r)
For each vertex u ∈ V, u 6= v,: Insert(PQ, u,∞)
Insert(PQ, v, 0), set visit(v) = NULL
WHILE PQ not empty DO

u = Delete-min(PQ)

For each (u, v) ∈ E DO

IF v ∈ PQ and w(u, v) < key(v):

visit[v] = u

Decrease-Key(PQ, v, w(u, v))

Output edges (u, visit(u)) as the MST

1

1. Show how the algorithm runs on an example graph.

2. What is the role of checking whether v ∈ PQ?

3. How many Insert operations are performed by the algorithm?

4. How many Delete-min operations are performed by the algorithm?

5. How many Decrease-Key operations are performed by the algorithm?

6. Assuming the priority is implemented as a heap, what is the complexity of the algo-
rithm?

Homework

1. (CLRS 23.1-1) Show that a minimum-weight edge in G belongs to some MST of G.

2. (CLRS 24.2-4) Suppose that all edge weights in a graph are integers in the range from
1 to |V |. How can you take advantage of this in Kruskal’s algorithm, and how fast can
you make it run? What if the edge weights are integers from 1 to W for some constant
W?

2

