Recurrence example

Consider the following recurrence which is very similar to the one for Mergesort:

$$
T(n)=3 T(n / 3)+n
$$

Below we solve it by iteration and then by substitution.

1 Iteration

$$
\begin{aligned}
T(n) & =3 T(n / 3)+n \\
& =3(3 T(n / 9)+n / 3))+n \\
& =9 T(n / 9)+2 n \\
& =9(3 T(n / 27+n / 9)+2 n \\
& =27 T(n / 27)+3 n \\
& =\ldots \\
& =3^{i} T\left(n / 3^{i}\right)+i \cdot n
\end{aligned}
$$

- Recursion depth: How long (how many iterations) it takes until the subproblem has constant size? i iterations, where $\frac{n}{3^{i}}=1 \Rightarrow i=\log _{3} n$
- What is the last term? $3^{i} T(1)=3^{\log _{3} n} T(1)=n \cdot 1=n$

So we have:

$$
\begin{aligned}
T(n) & =3^{\log _{3} n} T(1)+\log _{3} n \\
& =n+\log _{3} n \cdot n \\
& =\Theta(n \lg n)
\end{aligned}
$$

2 Substitution

With substitution we need to "guess" the result and prove it by induction. Unfortunately there is no easy recipe on how to "guess" - just through exercises, by building intuition. We usually start a recurrence by iteration, get a feel for the answer, and then formally prove the result with induction.

Guess $T(n) \leq c n \log _{3} n$ for some constant c, for any $n \geq n_{0}$.
Proof:

- Base case: we need to show that our guess holds for some base case (not necessarily $n=1$, some small n is ok).
Let's try for $n=1$: $T(1)=1<c \cdot 1 \cdot \log _{3} 1$ this is not true.
let's try $n=3: T(3)=3 T(1)+3=6<c 3 \log _{3} 3=3 c$, true for $c \geq 2$.
- Inductive hypothesis: Assume our guess/claim holds for $n / 3$, that is, $T(n / 3) \leq c \frac{n}{3} \log _{3} \frac{n}{3}$

Prove that this implies that it holds for $n: T(n) \leq c n \log _{3} n$
Proof:

$$
\begin{aligned}
T(n) & =3 T(n / 3)+n \\
& \leq 3\left(c \frac{n}{3} \log _{3} \frac{n}{3}\right)+n(\text { by inductive hyp }) \\
& =c n \log _{3} \frac{n}{3}+n \\
& =c n \log _{3} n-c n \log _{3} 3+n \\
& =c n \log _{3} n-c n+n
\end{aligned}
$$

We want to prove that $T(n) \leq c n \log _{3} n$, and this is true when $c \geq 1$
Putting together both conditions on c (one from the base case, and one from the induction hypothesis), we get $c \geq 2$. So we can chose $c=2$ and the claim is true. Thus we proved that $T(n) \leq 2 n \log _{3} n$.

3 Other recurrences

Some important/typical recurrences:

- Logarithmic: $\Theta(\log n)$
- Recurrence: $T(n)=1+T(n / 2)$
- Typical example: Recurse on half the input (and throw half away)
- Variations: $T(n)=1+T(99 n / 100)$
- Linear: $\Theta(N)$
- Recurrence: $T(n)=1+T(n-1)$
- Typical example: Single loop
- Variations:
* $T(n)=1+2 T(n / 2)$
* $T(n)=n+T(n / 2)$
* $T(n)=T(n / 5)+T(7 n / 10+6)+n$
- Quadratic: $\Theta\left(n^{2}\right)$
- Recurrence: $T(n)=n+T(n-1)$
- Typical example: Nested loops
- Exponential: $\Theta\left(2^{n}\right)$
- Recurrence: $T(n)=2 T(n-1)$

