Algorithms Homework 4*

Selection

Reading: GT Chapter 4.7

1. (GT C-4.16) Suppose we are given a sequence S of n elements, on which a total order relation is defined (meaning any two elements can be compared). Describe an efficient method for determining whether there are two equal elements in S. What is the running time of your method?
2. (GT C-4.23) Given an unordered sequence S of n comparable elements, describe an efficient method for finding the $\lceil\sqrt{n}\rceil$ items whose rank in an ordered version of S is closest to that of the median. What is the running time of your method?
3. (GT C-4.27) Given an unsorted sequence S of n elements, and an integer k, give an $O(n \lg k)$ expected time algorithm for finding the $O(k)$ elements that have rank $\lceil n / k\rceil$, $2\lceil n / k\rceil, 3\lceil n / k\rceil$, and so on.
4. (CLRS) Let A be a list of n (not necessarily distinct) integers. Describe an $O(n)$ algorithm to test whether any item occurs more than $\lceil n / 2\rceil$ times in A. Your algorithm should use $O(1)$ additional space.
extra credit (GT C-4.14) Suppose we are given a sequence S of n elements, each of which is an integer in the range $\left[0, n^{2}-1\right]$. Describe a simple method for sorting S in $O(n)$ time.
[^0]
[^0]: *Collaboration is allowed, even encouraged, provided that the names of the collaborators are listed along with the solutions. Write up the solutions on your own.

