
Growth of Functions
(CLRS 2.3,3)

1 Review

• Last time we discussed running time of algorithms and introduced the RAM model of com-
putation.

– Best-case running time: the shortest running time for any input of size n

– Worst-case running time: the longest running time for any input of size n

– Average-case running time: take the average assuming random inputs (uniformly dis-
tributed); this may not be a good indication of average time in practice, because inputs
are rarely uniform.

• We discussed insertion sort.

• We discussed proof of correctness of insertion sort using loop invariant.

• We analyzed the running time of insertion sort in the RAM model.

– Best-case: k1n− k2.

– Worst-case (and average case): k3n
2 + k4n− k5

• We discussed how we are normally only interested in growth of running time:

– Best-case: linear in n (∼ n)

– worst-case: quadratic in n (∼ n2).

Exercise 1 (2.2.4-CLRS) How can you modify almost any algorithm to have a good best-case
running time?

Solution 1

2 Today

• Define formally the bf rate of growth of a function

• Find the rate of growth of standard functions

• Algorithms matter!
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3 Asymptotic Growth

When we discussed Insertion Sort, we did a precise analysis of the running time and found that
the worst-case is k3n

2 + k4n− k5. The effort to compute all terms and the constants in front of the
terms is not really worth it, because for large input the running time is dominated by the term n2.
Another good reason for not caring about constants and lower order terms is that the RAM model
is not completely realistic anyway (not all operations cost the same).

k3n
2 + k4n− k5 ∼ n2

Basically, we look at the running time of an algorithm when the input size n is large enough
so that constants and lower-order terms do not matter. This is called aymptotic analysis of
algorithms.

Now we would like to formalize this idea (It is easy to see that n+2 ∼ n, or that 4n2+3n+10 ∼
n2. But how about more complicated functions? say nn + n! + nlog log n + n1/logn).

⇓

• We want to express rate of growth of a function:

– the dominant term with respect to n

– ignoring constants in front of it

k1n + k2 ∼ n
k1n log n ∼ n log n
k1n

2 + k2n + k3 ∼ n2

• We also want to formalize that a e.g. n log n algorithm is better than a n2 algorithm.

⇓

• O-notation (Big-O)

• Ω-notation

• Θ-notation

• you have probably seen it intuitively defined but we will now define it more carefully.
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3.1 O-notation (Big-O)

O(g(n)) = {f(n) : ∃ c, n0 > 0 such that f(n) ≤ cg(n) ∀n ≥ n0}

• O(·) is used to asymptotically upper bound a function.

We think of f(n) ∈ O(g(n)) as corresponding to f(n) ≤ g(n).

n0

cg(n)

f(n)

Examples:

• 1/3n2 − 3n ∈ O(n2) because 1/3n2 − 3n ≤ cn2 if c ≥ 1/3− 3/n which holds for c = 1/3 and
n > 1.

• k1n
2+k2n+k3 ∈ O(n2) because k1n

2+k2n+k3 < (k1+|k2|+|k3|)n2 and for c > k1+|k2|+|k3|
and n ≥ 1, k1n

2 + k2n + k3 < cn2.

• k1n
2 + k2n + k3 ∈ O(n3) as k1n

2 + k2n + k3 < (k1 + k2 + k3)n3

• f(n) = n2/3− 3n, g(n) = n2

– f(n) ∈ O(g(n))

– g(n) ∈ O(f(n))

• f(n) = an2 + bn + c, g(n) = n2

– f(n) ∈ O(g(n))

– g(n) ∈ O(f(n))

• f(n) = 100n2, g(n) = n2

– f(n) ∈ O(g(n))

– g(n) ∈ O(f(n))

• f(n) = n, g(n) = n2

– f(n) ∈ O(g(n))

Note: O(·) gives an upper bound of f , but not necessarilly tight:

• n ∈ O(n), n ∈ O(n2), n ∈ O(n3), n ∈ O(n100)
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3.2 Ω-notation (big-Omega)

Ω(g(n)) = {f(n) : ∃ c, n0 > 0 such that cg(n) ≤ f(n) ∀n ≥ n0}

• Ω(·) is used to asymptotically lower bound a function.

We think of f(n) ∈ Ω(g(n)) as corresponding to f(n) ≥ g(n).

f(n)

n0

cg(n)

Examples:

• 1/3n2 − 3n ∈ Ω(n2) because 1/3n2 − 3n ≥ cn2 if c ≤ 1/3− 3/n which is true if c = 1/6 and
n > 18.

• k1n
2 + k2n + k3 ∈ Ω(n2).

• k1n
2 + k2n + k3 ∈ Ω(n) (lower bound!)

• f(n) = n2/3− 3n, g(n) = n2

– f(n) ∈ Ω(g(n))

– g(n) ∈ Ω(f(n))

• f(n) = an2 + bn + c, g(n) = n2

– f(n) ∈ Ω(g(n))

– g(n) ∈ Ω(f(n))

• f(n) = 100n2, g(n) = n2

– f(n) ∈ Ω(g(n))

– g(n) ∈ Ω(f(n))

• f(n) = n, g(n) = n2

– g(n) ∈ Ω(f(n))

Note: Ω(·) gives a lower bound of f , but not necessarilly tight:

• n ∈ Ω(n), n2 ∈ Ω(n), n3 ∈ Ω(n), n100 ∈ Ω(n)
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3.3 Θ-notation (Big-Theta)

Θ(g(n)) = {f(n) : ∃ c1, c2, n0 > 0 such that c1g(n) ≤ f(n) ≤ c2g(n) ∀n ≥ n0}

• Θ(·) is used to asymptotically tight bound a function.

We think of f(n) ∈ Θ(g(n)) as corresponding to f(n) = g(n).

n0

c g(n)

2

1

f(n)

c g(n)

f(n) = Θ(g(n)) if and only if f(n) = O(g(n)) and f(n) = Ω(g(n))
It is easy to see (try it!) that:

Theorem 1 If f(n) ∈ O(g(n)) and f(n) ∈ Ω(g(n)) then f(n) ∈ Θ(g(n)).

Examples:

• k1n
2 + k2n + k3 ∈ Θ(n2)

• worst case running time of insertion-sort is Θ(n2)

• 6n log n +
√

n log2 n ∈ Θ(n log n):

– We need to find n0, c1, c2 such that c1n log n ≤ 6n log n+
√

n log2 n ≤ c2n log n for n > n0

c1n log n ≤ 6n log n +
√

n log2 n ⇒ c1 ≤ 6 + log n√
n

. Ok if we choose c1 = 6 and n0 = 1.

6n log n +
√

n log2 n ≤ c2n log n ⇒ 6 + log n√
n
≤ c2. Is it ok to choose c2 = 7? Yes,

log n ≤
√

n if n ≥ 2.

– So c1 = 6, c2 = 7 and n0 = 2 works.

• n2/3− 3n ∈ O(n2), n2/3− 3n ∈ Ω(n2) −→ n2/3− 3n ∈ Θ(n2)

• an2 + bn + c ∈ O(n2), an2 + bn + c ∈ Ω(n2) −→ an2 + bn + c ∈ Θ(n2)

• n 6= Θ(n2)

• f(n) = 6n lg n +
√

n lgn, g(n) = n lg n
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4 Growth Rate of Standard Functions

• Polynomial of degree d:

p(n) =
d∑

i=1

ai · ni = Θ(nd)

where a1, a2, . . . , ad are constants (and ad > 0).

• Any polylog grows slower than any polynomial.

loga n = O(nb),∀a > 0

• Any polynomial grows slower than any exponential with base c > 1.

nb = O(cn),∀b > 0, c > 1

Last time we looked at the problem of comparing functions (running times).

3n2 lg n + 2n + 1 vs. 1000n lg10 n + n lg n + 5

Basically, we want to quantify how fast a function grows when n −→∞.
⇓
asymptotic analysis of algorithms

More precisely, we want to compare 2 functions (running times) and tell which one is larger
(grows faster) than the other. We defined O,Ω,Θ:

n0

cg(n)

f(n)

• f is below g ⇔ f ∈ O(g) ⇔ f ≤ g

• f is above g ⇔ f ∈ Ω(g) ⇔ f ≥ g

• f is both above and below g ⇔ f ∈ Θ(g) ⇔ f = g

Example: Show that 2n2 + 3n + 7 ∈ O(n2)

Upper and lower bounds are symmetrical: If f is upper-bounded by g then g is lower-bounded
by f and we have:

f ∈ O(g) ⇔ g ∈ Ω(f)
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(Proof: f ≤ c · g ⇔ g ≥ 1
c · f). Example: n ∈ O(n2) and n2 ∈ Ω(n)

An O() upper bound is not a tight bound. Example:
2n2 + 3n + 5 ∈ O(n100)
2n2 + 3n + 5 ∈ O(n50)
2n2 + 3n + 5 ∈ O(n3)
2n2 + 3n + 5 ∈ O(n2)

Similarly, an Ω() lower bound is not a tight bound. Example:
2n2 + 3n + 5 ∈ Ω(n2)
2n2 + 3n + 5 ∈ Ω(n log n)
2n2 + 3n + 5 ∈ Ω(n)
2n2 + 3n + 5 ∈ Ω(lg n)

An asymptotically tight bound for f is a function g that is equal to f up to a constant factor:
c1g ≤ f ≤ c2g,∀n ≥ n0. That is, f ∈ O(g) and f ∈ Ω(g).

Some properties:

• f = O(g) ⇔ g = Ω(f)

• f = Θ(g) ⇔ g = Θ(f)

• reflexivity: f = O(f), f = Ω(f), f = Θ(f)

• transitivity: f = O(g), g = O(h) −→ f = O(h)

The growth of two functions f and g can be found by computing the limit limn−→∞
f(n)
g(n) . Using

the definition of O,Ω,Θ it can be shown that :

• if limn−→∞
f(n)
g(n) = 0: then intuitively f < g =⇒ f = O(g) and f 6= Θ(g).

• if limn−→∞
f(n)
g(n) = ∞: then intuitively f > g =⇒ f = Ω(g) and f 6= Θ(g).

• if limn−→∞
f(n)
g(n) = c, c > 0: then intuitively f = c · g =⇒ f = Θ(g).

This property will be very useful when doing exercises.
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5 Algorithms matter!

Sort 10 million integers on

• 1 GHZ computer (1000 million instructions per second) using 2n2 algorithm.

– 2·(107)2 inst.
109 inst. per second

= 200000 seconds ≈ 55 hours.

• 100 MHz computer (100 million instructions per second) using 50n log n algorithm.

– 50·107·log 107 inst.
108 inst. per second

< 50·107·7·3
108 = 5 · 7 · 3 = 105 seconds.

6 Comments

• The correct way to say is that f(n) ∈ O(g(n)). Abusing notation, people normally write
f(n) = O(g(n)).

3n2 + 2n + 10 = O(n2), n = O(n2), n2 = Ω(n), n log n = Ω(n), 2n2 + 3n = Θ(n2)

• When we say “the running time is O(n2)” we mean that the worst-case running time is O(n2)
— best case might be better.

• When we say “the running time is Ω(n2)”, we mean that the best case running time is Ω(n2)
— the worst case might be worse.

• Insertion-sort:

– Best case: Ω(n)
– Worst case: O(n2)
– We can also say that worst case is Θ(n2) because there exists an input for which insertion

sort takes Ω(n2). Same for best case.
– Therefore the running time is Ω(n) and O(n2).
– But, we cannot say that the running time of insertion sort is Θ(n2)!!!

• Use of O-notation makes it much easier to analyze algorithms; we can easily prove the O(n2)
insertion-sort time bound by saying that both loops run in O(n) time.

• We often use O(n) in equations and recurrences: e.g. 2n2 + 3n + 1 = 2n2 + O(n) (meaning
that 2n2 + 3n + 1 = 2n2 + f(n) where f(n) is some function in O(n)).

• We use O(1) to denote constant time.

• One can also define o and ω (little-oh and little-omega):

– f(n) = o(g(n)) corresponds to f(n) < g(n)
– f(n) = ω(g(n)) corresponds to f(n) > g(n)
– we will not use them; we’ll aim for tight bounds Θ.

• Not all functions are asymptotically comparable! There exist functions f, g such that f is not
O(g), f is not Ω(g) (and f is not Θ(g)).
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7 Review of Log and Exp

• Base 2 logarithm comes up all the time (from now on we will always mean log2 n when we
write log n or lg n).

– Number of times we can divide n by 2 to get to 1 or less.

– Number of bits in binary representation of n.

– Inverse function of 2n = 2 · 2 · 2 · · · 2 (n times).

– Way of doing multiplication by addition: log(ab) = log(a) + log(b)

– Note: log n <<
√

n << n

• Properties:

– lgk n = (lg n)k

– lg lg n = lg(lg n)

– alogb c = clogb a

– aloga b = b

– loga n = logb n
logb a

– lg bn = n lg b

– lg xy = lg x + lg y

– loga b = 1
logb a
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