CSci 231 Final Review

Here is a list of topics for the final. Generally you are responsible for anything discussed in
class and anything appearing on the homeworks.

1. Asymptotic growth of functions (O, 2, ©)
2. Summations

e Basic summations: arithmetic, geometric, harmonic
3. Recurrences

e Iteration

e Substitution (induction)

4. (Comparison-based) Sorting

stable sort, in-place sort

e Insertion sort
e Mergesort
Quicksort (Partition)

e Randomized quicksort

Heapsort

e Comparison-based sorting lower bound
5. Linear-time sorting

e Counting sort
e Radix sort

e Bucket sort
6. Selection
7. (Abstract) Data structures

e Priority queue (FIND-MIN, DELETE-MIN, INSERT, DELETE, CHANGE-KEY)
— Max priority queue, Min priority queue

e Dictionary (INSERT, DELETE, SEARCH)

e Union-Find (MAKE-SET, FIND-SET, UNION-SET)



8. Data structure implementations

e Priority queue
— Heap
* heap property
+ HEAPIFY, BUILDHEAP

e Dictionary

— Binary search trees (INSERT, DELETE, SEARCH, MIN, MAX, PRED, SUCC)
* binary search tree property
* tree walks

— Red-black trees
* red-black tree invariants

e Union-Find
— Linked list (and pointers to head of list) with weighted-union heuristic
9. Augmented search trees
e augment every node z with some additional information f(z); maintain f(z) under
INSERT and DELETE in the same asymptotic bounds.
e Sufficient if f(z) can be computed using only f(left(x)) and f(right(z)).
e implement SELECT (i), RANK(x) by augmenting every node z with size(x)

e Interval tree
10. Dynamic programming

e optimal substructure, overlapping subproblems

e recursive formulation,

e running time without storing table

e running time with dynamic programming (storing table)

e examples: weighted interval scheduling, subset sum, weighted subset sum (0-1 knapsack),
sequence alignment, longest common subsequence, shortest paths: Bellman Ford, APSP

11. Greedy algorithms

e Correctness proof

e examples: interval scheduling, fractional knapsack, Dijkstra, Prim, Kruskal
12. Graph algorithms

e Basic definitions, graph representation (adjacency list, adjacency matrix)
e Graph traversal: BFS

— @ directed or undirected

— find connected components (G undirected), check bipartiteness (G undirected), com-
pute shortest paths (G un-weighted, all edges have weight 1)



e Graph traversal: DFS

— G directed or undirected
— find cycles (back edges), topological sort (G directed, acyclic)

e Minimum spanning tree (MST)
— G connected, undirected, weighted
— Prim’s MST algorithm
— Kruskal’s MST algorithm
e Shortest paths: SP
— Dijkstra’s SSSP algorithm
* (G directed or undirected, weighted, non-negative weights
SP on DAGs
— SSSP on graphs with negative edge weights

SP with dynamic programming
* APSP and matrix multiplication
x APSP Floyd-Warsall’s algorithm

Review Questions

1. Ts it true that Y(=0(3/4)) = O(1)?

2. Give a formula for the arithmetic sum: 04142+ ... +n=Y=0i=
3. Is it true that 78" = O(n?)?

4. Is it true that 78" = Q(n?)?

5. Is it true that log\/n = O(y/logn)?

6. Is Mergesort stable?

7. Is Quicksort in place?

8. Is is true that the running time of Quicksort is ©(n?)?

9. Is it true that the worst-case running time of Quicksort is ©(n?)?



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

What is the running time of Mergesort when input is sorted in reverse order?

What is the running time of Heapsort when input is sorted?

Which of the following algorithms (as presented in class) is stable: Quicksort, Heapsort,
Counting Sort?

Recall that a sorting algorithm is in place is it requires O(1) additional storage. Which of the
following algorithms (as presented in class) is in place: Quicksort, Heapsort, Counting Sort?

You have a heap containing n keys. As a function of n, how long does it take to change a
key? To delete a key?

Is it true that any sorting algorithm must take Q(nlogn) in the worst-case?

Counting Sort sorts n integers in time O(n + k). What is the assumption?

How fast can one find the minimum element in an array of n elements in the best case? In
the worst case?

Is it true that SELECT (A, n), where A is an array of n elements, returns the largest element
in the array?

Given a node z in a min heap, with children nodes [ and r, what does the heap property tell
us about z.key, l.key, r.key?

Is it true that building a heap of n elements takes O(n)?

Given a heap with n keys, is it true that you can search for a key in O(logn) time?

Given a binary search tree with n elements, its height can be as small as € ) and as
large as O( ).

Is it true that the height of a red-black tree with n elements is O(logn)?



24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

How long does it take, in the worst case, to build a red-black tree of n elements?

You have a binary search tree T" with n elements. Is it true that the predecessor of an element
in T can be found in O(1) time?

Is it true that some dynamic programming problems can be solved faster using greedy algo-
rithms?

As a function of |V|, what is the minimum number of edges in a connected undirected graph
with |V| vertices?

How many edges are in a complete graph with |V| vertices?

You have an undirected, connected, weighted graph G and a source vertex s. Is it true that
BFS computes shortest paths from s to every other vertex?

Is it true that Prim’s and Kruskal’s algorithms are greedy?

Is it true that Dijkstra’s SSSP algorithm works only on graphs with non-negative edge
weights?

Let p =u — v1 — vo... = v — v be the shortest path from u to v in a graph G. Let v; and
v; be two vertices on p such that 1 <+¢ < j < k. Is it true that the subpath v; — vj41... — v;
in p is the shortest path in G from v; to v;?

Can a shortest path contain cycles?

Is it true that running Dijkstra’s algorithm on a graph G = (V, E) takes O(|E| - log |V|)?

You have a complete graph with |V| vertices. How long does it take to run Dijkstra’s algorithm
on this graph?

Is it true that you can compute a MST using a Union-Find data structure?

How long does it take to run Prim’s algorithm on a graph G = (V, E)?



38.

39.

40.

Is it true that Prim’s algorithm only works on undirected graphs?

How fast can you compute shortest paths between two arbitrary nodes in a graph with negative
edge weights?

How fast can one identify negative cycles in a graph?

Practice problems

1.

2.

3.

Rank the following functions in increasing order of asymptotic growth.

500n3, 17n 4 (2/n?), Tnloglog n, 4logs n, 20 log(n?), g3logn ogvn

In this problem we consider a data structure D for maintaining a set of integers under the
normal INIT, INSERT, DELETE, and FIND operations, as well as a COUNT operation, defined
as follows:

e INIT(D): Create an empty structure D.

INSERT(D,z): Insert z in D.
DELETE(D,x): Delete x from D.

FIND(D,z): Return pointer to x in D.

CoUNT(D,x): Return number of elements larger than x in D.

Describe how to modify a standard red-black tree in order to implement D such that INIT is
supported in O(1) time and INSERT, DELETE, FIND, and COUNT are supported in O(logn)
time.

b) Given an array S[l..n] of integers, an inversion is a pair of elements S[i| and S[j], i < j,
such that S[i] > S[j]. How many inversions does the array [5,2,7,1,9,4,6] have?

c) Using the data structure D designed in problem a), describe an O(nlogn) algorithm for
computing the number of inversions in an array S[1..n].

You are given an array A[l..n| of real numbers, some positive, some negative. Design an
O(nlogn) algorithm which determines whether A contains two elements A[i] and A[j] such
that Afi] = —A[j]. (If A contains the element 0, then the answer is always YES.)

. Consider a pole-graph which is an undirected graph with positive edge weights, consisting of

two poles connected through a layer of nodes as follows:



Let n be the number of vertices in a pole-graph and assume that the graph is given in normal
edge-list representation.

(a) How long would it take Dijkstra’s algorithm to find the single-source-shortest-paths from
one of the poles in a pole-graph to all other nodes?

(b) Describe and analyze a more efficient algorithm for solving the single-source-shortest-
paths problem on a pole-graph. Remember to prove that the algorithm is correct.

. The binomial coefficient C'(n, k) counts the number of ways of choosing & distinct items from
a set of n items. It can be defined as follows:

Cn,k)=Cn—1,k—1)+C(n—1,k) forn >0 and k >0
C(n,0)=1 forn>0
C(0,k)=0 for k>0

The procedure BINO(n, k) below computes C(n, k) using the recursive formulation above.

Bino(n,k)
if (k=0)
return 1
else if (n=0)
return 0O
else
return Bino(n-1,k-1) + Bino(n-1,k)
end

(a) Write the recurrence for the running time T'(n, k) of BINO(n, k) and show that it is
exponential. (Hint: Show that TcomputecBinCocf (1, k) = Q(2%))

(b) Describe a dynamic programming algorithm for calculating C(n, k) and analyze its run-
ning time.



6. Suppose the degree requirements for a computer science major are organized as a dag (directed
acyclic graph), where vertices are required courses and an edge (x,y) means course x must
be completed prior to beginning course y. Make the following assumptions:

e All prerequisites must be obeyed.

e There is a course, CPS1, that must be taken before any other course.

e Every course is offered every semester.

e There is no limit to the number of courses you can take in one semester.

Describe an efficient algorithm to compute the minimum number of semesters required to
complete the degree and analyze its running time.

7. Consider an undirected weighted graph which is formed by taking a binary tree and adding
an edge from ezactly one of the leaves to another node in the tree. We call such a graph a
loop-tree. An example of a loop-tree could be the following:

Let n be the number of vertices in a loop-tree and assume that the graph is given in the normal
edge-list representation without any extra information. In particular, the representation does
not contain information about which vertex is the root.

(a) How long time would it take Prim’s or Kruskal’s algorithms to find the minimal spanning
tree of a loop-tree? Make your bound as tight as possible.

(b) Describe and analyze a more efficient algorithm for finding the minimal spanning tree
of a loop-tree. Remember to prove that the algorithm is correct.



