
Minimum Spanning Trees
(CLRS 23)

• Problem: Given connected, undirected graph G = (V,E) where each edge (u, v) has weight
w(u, v). Find acyclic set T ⊆ E connecting all vertices in V with minimal weight
w(T) =

∑
(u,v)∈T w(u, v).

• An acyclic set connecting all vertices is called a spanning tree. We want to find a spanning
tree of minimal weight. We use minimum spanning tree as short for minimum weight spanning
tree).

• MST problem has many applications

– For example, think about connecting cities with minimal amount of wire or roads (cities
are vertices, weight of edges are distances between city pairs).

• Example:

1 PRIM’s algorithm

– Greedy algorithm for computing MST:

∗ Start with spanning tree containing arbitrary vertex r and no edges
∗ Grow spanning tree by repeatedly adding minimal weight edge connecting vertex in

current spanning tree with a vertex not in the tree

– Implementation:

∗ To find minimal edge connected to current tree we maintain a priority queue on
vertices not in the tree. The key/priority of a vertex is the weight of minimal weight
edge connecting it to the tree. (We maintain pointer from adjacency list entry of v
to v in the priority queue).

∗ For each node u maintain visit(u) ((u, visit(u)) is the cuurently best edge connecting
it to the tree.)

1

PRIM(r)

For each v ∈ V DO
Insert(PQ, v,∞)

Decrease-Key(PQ, r, 0)
WHILE PQ not empty DO

u = Deletemin(PQ)
(output edge (u, visit(u)) as part of MST)
For each (u, v) ∈ E DO

IF v ∈ PQ and w(u, v) < key(v) THEN
visit[v] = u

Decrease-Key(PQ, v, w(u, v))

– On the example graph, the greedy algorithm would work as follows (starting at vertex a):

1

7
8

4

8

11

1 2

4

2

14

9

10

4

8
7

11

1 2

4

2

14

9

10

9

14

7

2

4

21

11
7

8

8

8

8

4

7

4

2

7

7
11

10

4

2

7

14

9

10

8

a

b

h

c d

e

fg

i

b

h

c d

e

fg

i

i

f

e

dc

h

a

g

a

bc

a i

c d

d

gh

b

e

f

e

g

f

h

b

ia

b

h g f

e

dc

ia

a i

c d

e

fgh

b
b)

c) d)

a)

9

14

7

2

4

21

11
7

8

8

4

10

9

14

7

2

4

21

11
7

8

8

4

9

14

7

2

4

21

11

8

8

4

10 10

4

8

8

10

7

9

7
11

1 2

4

2

7

14

g

ia

d

e

f

b

h

a

b

h

c d

e

fg

i

c

a

b

h

c d

e

fg

ia

b

h

c d

e

fg

i

a

b

h

c d

e

fg

i

a

b

h

c d

e

fg

i

a

b

h

c d

e

fg

i

e) f)

g) h)

2

– Analysis:

∗ While loop runs |V | times ⇒ we perform |V | Deletemin’s
∗ We perform at most one Decrease-Key for each of the |E| edges
⇓
O((|V |+ |E|) log |V |) = O(|E| log |V |) running time.

– Correctness:

∗ When designing a greedy algorithm the hard part is to prove that it works correctly.
∗ We will prove a Theorem that allows us to prove the correctness of a general class

of greedy MST algorithms:
Some definitions
· A cut (S, V \ S) is a partition of V into sets S and V \ S

· A edge (u, v) crosses a cut S if u ∈ S and v ∈ V \ S or v ∈ S and u ∈ V \ S

· A cut S respects a set T ⊆ E if no edge in T crosses the cut
Example: Cut S respects T

"cut"
S

V \ S

= T

– Theorem: If G = (V,E) is a graph such that T ⊆ E is subset of some MST of G, and S
is a cut respecting T then there is a MST for G containing T and the minimum weight
edge e = (u, v) crossing S.

– Note: Correctness of Prim’s algorithm follows from the Theorem by induction—cut
consist of current spanning tree.

– Proof:

∗ Let T ∗ be MST containing T

∗ If e ∈ T ∗ we are done
∗ If e /∈ T ∗:

· There must be (at least) one other edge (x, y) ∈ T ∗ crossing the cut S such that
there is a unique path from u to v in T ∗ (T ∗ is spanning tree)

3

Cut

e

v

u
y

x

= T

· This path together with e forms a cycle
· If we remove edge (x, y) from T ∗ and add e instead, we still have spanning tree
· New spanning tree must have same weight as T ∗ since w(u, v) ≤ w(x, y)
⇓
There is a MST containing T and e.

– The Theorem allows us to describe a very abstract greedy algorithm for MST:

T = ∅
While |T | ≤ |V | − 1 DO

Find cut S respecting T

Find minimal edge e crossing S

T = T ∪ {e}

∗ Prim’s algorithm follows this abstract algorithm.
∗ Kruskal’s algorithm is another implementation of the abstract algorithm.

2 Kruskal’s Algorithm

– Kruskal’s algorithm is another implementation of the abstract algorithm.

– Idea in Kruskal’s algorithm:

∗ Start with |V | trees (one for each vertex)
∗ Consider edges E in increasing order; add edge if it connects two trees

– Example:

4

2

7
8

4

8

11

1 2

4

2

14

9

10

4

8
7

11

1 2

4

2

14

9

10

9

14

7

2

4

21

11
7

8

8

8

8

4

7

4

2

7

7
11

1

4

10

7

14

9

10

8

a

b

h

c d

e

fg

i

b

h

c d

e

fg

i
6 6

666
i

g

a

f

ea

b

h

c d

i

c d

e

fg

a

b

c d

h

ia

b

h g f

e

dc

ia

a i

c d

e

fgh

b
b)

c) d)

a)

e

fgh

b

11
7

8

4

8

1 2

4

2

14

9

10

4

8
7

11

1 2

4

2

14

9

10

10

9

14

7

2

4

21

11
7

4

8

8

7

7

8

10

11

7

94

8

8

1 2

4

2

7

14

a

b

h

c d

e

fg

i

b

h

c d

e

fg

i

66

6

g f

e

a

d

i

6

a

b

h

c

i

c d

e

f

a

d

e

g

b

h

c

f

i

b

h g f

e

dc

i

a i

c d

e

fgh

b
b)

c) d)

a)

a

gh

a

b

– Implementation:

We need (Union-Find) data structure that supports:

∗ Make-set(v): Create set consisting of v

∗ Union-set(u, v): Unite set containing u and set containing v

∗ Find-set(u): Return unique representative for set containing u

5

KRUSKAL

T = ∅
FOR each vertex v ∈ V Make-Set(v)
Sort edges of E in increasing order by weight
FOR each edge e = (u, v) ∈ E in order DO

IF Find-Set(u) 6= Find-Set(v) THEN
T = T ∪ {e}
Union-Set(u, v)

– Analysis:

∗ We use O(|E| log |E|) time to sort edges and we perform |V | Make-Set, |V | − 1
Union-set, and 2|E| Find-Set operations.

∗ We will discuss a simple solution to the Union-Find problem such that Make-Set
and Find-Set take O(1) time and Union-Set takes O(log V) time amortized.
⇓
Kruskal’s algorithm runs in time O(|E| log |E|+|V | log |V |) = O((|E|+|V |) log |E|) =
O(|E| log |V |) like Prim’s algorithm.

– Correctness

∗ follows from Theorem above: If minimal edge connects two trees then there exists a
cut respecting the current set of edges (cut consisting of vertices in one of the trees)

3 Union-Find

– The Union-Find problem: Maintain a set system under:

∗ Make-set(v): Create set consisting of v

∗ Union-set(u, v): Unite set containing u and set containing v

∗ Find-set(u): Return unique representative for set containing u

– Simple solution:

∗ Maintain elements in same set as a linked list with each element having a pointer
to the first element in the list (unique representative)

Example:

6

2
11

8
3

791112

1

6

10

5
4

12 7

9

3 2 1 10 6 8 5 4

Sets

Representation

∗ Make-Set(v): Make a list with one element ⇒ O(1) time
∗ Find-Set(u): Follow pointer and return unique representative ⇒ O(1) time
∗ Union-Set(u, v): Link first element in list with unique representative Find-Set(u)

after last element in list with unique representative Find-set(v) ⇒ O(|V |) time (as
we have to update all unique representative pointers in list containing u)

– With this simple solution the |V |−1 Union-Set operations in Kruskal’s algorithm may
take O(|V |2) time.

– We can improve the performance of Union-Set with a very simple modification: Always
link the smaller list after the longer list (⇒ update the pointers of the smaller list)

∗ One Union-Set operation can still take O(|V |) time, but the |V | − 1 Union-Set
operations takes O(|V | log |V |) time altogether (one Union-Set takes O(log |V |)
time amortized):
· Total time is proportional to number of unique representative pointer changes
· Consider element u:

After pointer for u is updated, u belongs to a list of size at least double the size
of the list it was in before
⇓
After k pointer changes, u is in list of size at least 2k

⇓
Pointer can be changed at most log |V | times.

– With improvement, Kruskal’s algorithm runs in time O(|E| log |E|+|V | log |V |) = O((|E|+
|V |) log |E|) = O(|E| log |V |) like Prim’s algorithm.

7

