Minimum Spanning Trees
(CLRS 23)

Problem: Given connected, undirected graph G = (V, E) where each edge (u,v) has weight
w(u,v). Find acyclic set T'C E connecting all vertices in V' with minimal weight

w(T) = Z(u,v)ET w(u’ U)'
An acyclic set connecting all vertices is called a spanning tree. We want to find a spanning

tree of minimal weight. We use minimum spanning tree as short for minimum weight spanning
tree).

MST problem has many applications

— For example, think about connecting cities with minimal amount of wire or roads (cities
are vertices, weight of edges are distances between city pairs).

Example:

1 PRIM’s algorithm

— Greedy algorithm for computing MST:

* Start with spanning tree containing arbitrary vertex r and no edges

x Grow spanning tree by repeatedly adding minimal weight edge connecting vertex in
current spanning tree with a vertex not in the tree

— Implementation:

* To find minimal edge connected to current tree we maintain a priority queue on
vertices not in the tree. The key /priority of a vertex is the weight of minimal weight
edge connecting it to the tree. (We maintain pointer from adjacency list entry of v
to v in the priority queue).

« For each node u maintain visit(u) ((u, visit(u)) is the cuurently best edge connecting
it to the tree.)



PRIM(r)

For each v € V DO
INSERT(PQ, v, 00)
DECREASE-KEY(PQ,,0)
WHILE PQ not empty DO
u = DELETEMIN(PQ)
(output edge (u,visit(u)) as part of MST)
For each (u,v) € E DO
IF v € PQ and w(u,v) < key(v) THEN
visit[v] = u
DECREASE-KEY(PQ, v, w(u,v))

— On the example graph, the greedy algorithm would work as follows (starting at vertex a):




— Analysis:
« While loop runs |V| times = we perform |V| DELETEMIN’s
* We perform at most one DECREASE-KEY for each of the |E| edges

I
O((|[V| +|E])log |V|) = O(|E|1log |[V]) running time.

— Correctness:

* When designing a greedy algorithm the hard part is to prove that it works correctly.

x We will prove a Theorem that allows us to prove the correctness of a general class
of greedy MST algorithms:
Some definitions

- A cut (S,V'\ S) is a partition of V into sets S and V' \ S
- A edge (u,v) crosses a cut Sifue SandveV\SorveSandueV\S
- A cut S respects a set T C FE if no edge in T crosses the cut

Example: Cut S respects T’

"cut

V\S

— Theorem: If G = (V, E) is a graph such that 7' C F is subset of some MST of G, and §
is a cut respecting 7' then there is a MST for G containing T and the minimum weight
edge e = (u,v) crossing S.

— Note: Correctness of Prim’s algorithm follows from the Theorem by induction—cut
consist of current spanning tree.

— Proof:

* Let T be MST containing T’
x If e € T* we are done
x If e ¢ T
- There must be (at least) one other edge (x,y) € T™ crossing the cut S such that
there is a unique path from u to v in T* (T* is spanning tree)



- This path together with e forms a cycle
- If we remove edge (z,y) from T and add e instead, we still have spanning tree

- New spanning tree must have same weight as T* since w(u,v) < w(z,y)

4
There is a MST containing T" and e.

— The Theorem allows us to describe a very abstract greedy algorithm for MST:

T=10

While |T'| < |V| -1 DO
Find cut S respecting T’
Find minimal edge e crossing S
T=TU{e}

x Prim’s algorithm follows this abstract algorithm.
x Kruskal’s algorithm is another implementation of the abstract algorithm.

2 Kruskal’s Algorithm

— Kruskal’s algorithm is another implementation of the abstract algorithm.
— Idea in Kruskal’s algorithm:

* Start with |V| trees (one for each vertex)
x Consider edges F in increasing order; add edge if it connects two trees

— Example:



— Implementation:

We need (Union-Find) data structure that supports:
* MAKE-SET(v): Create set consisting of v
* UNION-SET(u,v): Unite set containing v and set containing v

* FIND-SET(u): Return unique representative for set containing u



KRUSKAL

T=10

FOR each vertex v € V. MAKE-SET(v)

Sort edges of F in increasing order by weight
FOR each edge e = (u,v) € E in order DO

IF FIND-SET(u) # FIND-SET(v) THEN
T =TU/{e}
UNION-SET(u, v)

— Analysis:
* We use O(|E|log|E|) time to sort edges and we perform |V| MAKE-SET, |[V| — 1
UNION-SET, and 2|E| FIND-SET operations.

x We will discuss a simple solution to the Union-Find problem such that MAKE-SET
and FIND-SET take O(1) time and UNION-SET takes O(log V') time amortized.

4
Kruskal’s algorithm runs in time O(|E| log |E|+|V|log|V]) = O((|E|+|V]) log | E]) =
O(|E|log|V]) like Prim’s algorithm.

— Correctness

x follows from Theorem above: If minimal edge connects two trees then there exists a
cut respecting the current set of edges (cut consisting of vertices in one of the trees)

3 Union-Find

— The Union-Find problem: Maintain a set system under:

* MAKE-SET(v): Create set consisting of v
* UNION-SET(u,v): Unite set containing u and set containing v
* FIND-SET(u): Return unique representative for set containing u

— Simple solution:

+x Maintain elements in same set as a linked list with each element having a pointer
to the first element in the list (unique representative)

Example:



* MAKE-SET(v): Make a list with one element = O(1) time

* FIND-SET(u): Follow pointer and return unique representative = O(1) time

* UNION-SET(u,v): Link first element in list with unique representative FIND-SET(u)
after last element in list with unique representative FIND-SET(v) = O(|V|) time (as
we have to update all unique representative pointers in list containing )

— With this simple solution the |V| —1 UNION-SET operations in Kruskal’s algorithm may
take O(|V]?) time.

— We can improve the performance of UNION-SET with a very simple modification: Always
link the smaller list after the longer list (= update the pointers of the smaller list)

* One UNION-SET operation can still take O(|V|) time, but the |[V| — 1 UNION-SET
operations takes O(|V|]log|V]) time altogether (one UNION-SET takes O(log|V|)
time amortized):

- Total time is proportional to number of unique representative pointer changes
- Consider element u:
After pointer for u is updated, u belongs to a list of size at least double the size
of the list it was in before

4

After k pointer changes, u is in list of size at least 2*

4

Pointer can be changed at most log |V times.

— With improvement, Kruskal’s algorithm runs in time O(|E|log |E|+|V |log |V|) = O((|E|+
|V])log |E|) = O(|E|log |V|) like Prim’s algorithm.

J



