
Basic Graph Algorithms
(CLRS B.4-B.5, 22.1-22.4)

1 Basic Graph Definitions

• A graph G = (V,E) consists of a finite set of vertices V and a finite set of edges E.

– Directed graphs: E is a set of ordered pairs of vertices (u, v) where u, v ∈ V

1 2

54

3

6

V = {1, 2, 3, 4, 5, 6}

E = {(1,2), (2,2), (2,4), (2,5)

(4,1), (4,5), (5,4), (6,3)}

– Undirected graph: E is a set of unordered pairs of vertices {u, v} where u, v ∈ V

21

5

3

64

E = {{1,2}, {1,5}, {2,5}, {3,6}}

V = {1, 2, 3, 4, 5, 6}

• Edge (u, v) is incident to u and v

• Degree of vertex in undirected graph is the number of edges incident to it.

• In (out) degree of a vertex in directed graph is the number of edges entering (leaving) it.

• A path from u1 to u2 is a sequence of vertices < u1=v0, v1, v2, · · · , vk=u2 > such that
(vi, vi+1) ∈ E (or {vi, vi+1} ∈ E)

– We say that u2 is reachable from u1

– The length of the path is k

– It is a cycle if v0 = vk

• An undirected graph is connected if every pair of vertices are connected by a path

– The connected components are the equivalence classes of the vertices under the “reach-
ability” relation. (All connected pair of vertices are in the same connected component).

1

• A directed graph is strongly connected if every pair of vertices are reachable from each other

– The strongly connected components are the equivalence classes of the vertices under the
“mutual reachability” relation.

• Graphs appear all over the place in all kinds of applications, e.g:

– Trees (|E| = |V | − 1)

– Connectivity/dependencies (house building plans, WWW-page connections = internet
graph)

• Often the edges (u, v) in a graph have weights w(u, v), e.g.

– Road networks (distances)

– Cable networks (capacity)

1.1 Representation

• Adjacency-list representation:

– Array of |V | list of edges incident to each vertex.

Examples:

6

3

54

1 2
2

3

3

4

5

6

2

1

2 4 5

5 1

4

21

5

3

64

1

2

3

4

5

6

2 5

1 5

6

2 1

3

– Note: For undirected graphs, every edge is stored twice.

– If graph is weighted, a weight is stored with each edge.

• Adjacency-matrix representation:

2

– |V | × |V | matrix A where

aij =

{
1 if (i, j) ∈ E
0 otherwise

Examples:

6

3

4

1 2

5
6

0

1 2 3 4 5 6

1

2

3

4

5

00 1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

1

1 1

1

111

11

1

j

i

21

5

3

64

1

2

3

4

5

6

1 2 4 5 63

0 1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1 1

1

1

1

1

i

j

– Note: For undirected graphs, the adjacency matrix is symmetric along the main diagonal
(AT = A).

– If graph is weighted, weights are stored instead of one’s.

• Comparison of matrix and list representation:

Adjacency list Adjacency matrix

O(|V |+ |E|) space O(|V |2) space
Good if graph sparse (|E| << |V |2) Good if graph dense (|E| ≈ |V |2)
No quick access to (u, v) O(1) access to (u, v)

• We will use adjacency list representation unless stated otherwise (O(|V |+ |E|) space).

2 Graph traversal

• There are two standard (and simple) ways of traversing all vertices/edges in a graph in a
systematic way

– Breadth-first

– Depth-first

• We can use them in many fundamental algorithms, e.g finding cycles, connected components,
. . .

3

2.1 Breadth-first search (BFS)

• Main idea:

– Start at some source vertex s and visit,

– All vertices at distance 1,

– Followed by all vertices at distance 2,

– Followed by all vertices at distance 3,
...

• BFS corresponds to computing shortest path distance (number of edges) from s to all other
vertices.

• To control progress of our BFS algorithm, we think about coloring each vertex

– White before we start,

– Gray after we visit the vertex but before we have visited all its adjacent vertices,

– Black after we have visited the vertex and all its adjacent vertices (all adjacent vertices
are gray).

• We use a queue Q to hold all gray vertices—vertices we have seen but are still not done with.

• We remember from which vertex a given vertex v is colored gray – i.e. the node that discovered
v first; this is called parent[v].

• Algorithm:

BFS(s)

color[s] = gray

d[s] = 0

ENQUEUE(Q, s)

WHILE Q not empty DO

DEQUEUE(Q, u)
FOR (u, v) ∈ E DO

IF color[v] = white THEN
color[v] = gray
d[v] = d[u] + 1
parent[v] = u
ENQUEUE(Q, v)

FI
color[u] = black

OD

4

• Algorithm runs in O(|V |+ |E|) time

• Example (for directed graph):

212

13

2

2

12

1

2

21

1

2

2

21

1

32

���
���
���
���

���
���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

a s

b c e g

fd

Q : Q :

Q :

Q : Q :

1

1

c, a

a, d, e d, e, b

e, b, f b, f

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

Q :

a) b)

c)
d)

e)
f)

���
���
���
���

���
���
���
���

��
��
��

��
��
��

Q : g

1

12 2

2 3

4

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

Q : f

1 2 3

22 1

g)

Q :

1

12 2

2 3

4

i)

h)

• Note:

– parent[v] forms a tree; BFS-tree.
– d[v] contains length of shortest path from s to v. (Prove by induction)
– We can use parent[v] to find the shortest path from s to a given vertex.

• If graph is not connected we have to try to start the traversal at all nodes.

FOR each vertex u ∈ V DO

IF color[u] = white THEN BFS(u)

OD

5

– Note: We can use algorithm to compute connected components in O(|V |+ |E|) time.

2.2 Depth-first search (DFS)

• If we use stack instead of queue Q we get another traversal order; depth-first

– We go “as deep as possible”,

– Go back until we find unexplored adjacent vertex,

– Go as deep as possible,
...

• Often we are interested in “start time” and “finish time” of vertex u

– Start time (d[u]): indicates at what “time” vertex is first visited.

– Finish time (f[u]): indicates at what “time” all adjacent vertices have been visited.

• We can write DFS iteratively using the same algorithm as for BFS but with a STACK instead
of a QUEUE, or, we can write a recursive DFS procedure

– We will color a vertex gray when we first meet it and black when we finish processing
all adjacent vertices.

• Algorithm:

DFS(u)

color[u] = gray

d[u] = time

time = time + 1

FOR (u, v) ∈ E DO

IF color[v] = white THEN
parent[v] = u

DFS(v)

FI

OD

color[u] = black

f [u] = time

time = time + 1

• Algorithm runs in O(|V |+ |E|) time

– As before we can extend algorithm to unconnected graphs and we can use it to detect
cycles in O(|V |+ |E|) time.

6

• Example:
idth=12cmdfs1.pdf

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��

��
��
��

1/

2/

3/ 4/

5/6/7

1/

2/

3/ 4/

6/7

1/

2/

3/

6/7

1/

6/7

5/8

5/8

4/9

2/11 5/8

4/93/10

1/

2/ 6/7 5/8

4/93/10

6/7

1/ 3/10 4/9

5/82/11

g) h)

i) j)

k) l)

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

6/7

1/ 3/10 4/9

5/82/11 6/72/11 5/8

4/93/10

6/7

1/ 3/10 4/9

5/82/11

12/ 12/

13/

1/

12/

13/14 6/72/11 5/8

4/93/101/16

13/14

12/15

m) n)

o) p)

• As previously parent[v] forms a tree; DFS-tree

– Note: If u is descendent of v in DFS-tree then d[v] < d[u] < f [u] < f [v]

3 Topological sorting

• Definition: Topological sorting of directed acyclic graph G = (V,E) is a linear ordering of
vertices V such that (u, v) ∈ E ⇒ u appear before v in ordering.

7

• Topological ordering can be used in scheduling:

– Example: Dressing (arrow implies “must come before”)

Underwear

Pants

Belt

Shirt

Tie

Jacket

Socks

Shoes

Watch

We want to compute order in which to get dressed. One possibility:

Socks

98765

Shirt

4

Underwear Pants Shoes Watch Belt Tie Jacket

1 2 3

The given order is one possible topological order.

• Algorithm: Topological order just reverse DFS finish time (⇒ O(|V |+ |E|) running time).

• Correctness: (u, v) ∈ E ⇔ f(v) < f(u)

– Proof: When (u, v) is explored by DFS algorithm, v must be white or black (gray ⇒
cycle).

∗ v white: v visited and finished before u is finished ⇒ f(v) < f(u)
∗ v black: v already finished ⇒ f(v) < f(u)

• Alternative algorithm: Count in-degree of each vertex and repeatedly number and remove
in-degree 0 vertex and its outgoing edges: Homework.

8

