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1 Greedy Algorithms

1.1

We have previously discussed how to speed up optimization problems using the technique of
dynamic programming:

— The problem must have the optimal substructure property: the optimal solution to the
problem contains within it optimal solutions to smaller subproblems.

— Typically the number of different subproblems is polynomial, but the recursive algorithm
implementing the recursive formulation of the problem is exponential. This is because
of overlapping calls to same subproblem.

— Idea: If same subproblem is solved several times, use table to store result of a subproblem
the first time it is computed and never compute it again.

Alternatively, we can think about filling up a table of subproblem solutions from the
bottom.

A further technique that can be used for optimizitaion problems (that uses the same feature
of optimal substructure) is greediness.

Some problems that are solved by dynamic programmic can be further speeded up by making
a greedy choice

We are only interested in Greedy algorithms if we can prove they lead to the globally optimal
solution.

Like in the case of dynamic programming, we will introduce greedy algorithms via an example.

Activity Selection

Problem: Given a set A = {A;, Aa, -+, A,} of n activities with start and finish times (s;, f;),
1 <4 < n, select maximal set S of “non-overlapping” activities.

— One can think of the problem as corresponding to scheduling the maximal number of
classes (given their start and finish times) in one classroom.

Dynamic programming solution: O(n?) read the textbook.
Greedy solution:

— Sort activity by finish time (let A, Ay, - -+, A, denote sorted sequence)



— Pick first activity Ay
— Remove all activities with start time before finish time of A;

— Recursively solve problem on remaining activities.

e Program:

Sort A by finish time
S ={A1}
71=1
FOR i =2 ton DO
IF s; > f; THEN
S=SU{A;}
j=1
FI
OD

e Example:

— 11 activities sorted by finish time: (1,4),(3,5),(0,6),(5,7),(3,8),(5,9),
(6,10),(8,11),(8,12),(2,13), (12, 14)
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e Running time is obviously O(nlogn).
e Is algorithm correct?

— Output is set of non-overlapping activities, but is it the largest possible?
e Proof of correctness:

— Given activities A = { Ay, Ag, - - -, A, } ordered by finish time, there is an optimal solution
containing Aj:
x Suppose S C A is optimal solution
x If A; € S, we are done
x If A; ¢ S:
- Let first activity in S be Ay,
- Make new solution S\ {Ax} U {A1} by removing Ay and using A; instead
- This is valid solution (f; < f) of maximal size (|S\ {Ax} U{A41}| =15])
— S is an optimal solution for A containing A4; = S’ = S\ {4;} optimal solution for
A'={A; € A:s; > fi} (e.g. after choosing A; the problem reduces to finding optimal
solution for activities not overlapping with A;)



* Suppose we have solution S” to A’ such that |S”| > |S'| = |S] — 1
x S = S"U{A;} would be solution to A
* Contradiction since we would have |S”| > |5]|

— Correctness follows by induction on size of S

2 Comparison of greedy technique with dynamic programming

Both techniques use optimal substructure (optimal solution “contains optimal solution for
subproblems within it”).

In dynamic programming, solution depends on solution to subproblems.That is, compute the
optimal solutions for each possible choice and thencompute the optimal way to combine things
together.

In greedy algorithm we choose what looks like best solution at any given moment and recurse
(choice does not depend on solution to subproblems).

Note: Shortsightedness: Always go for seemingly next best thing, optimizing the present
without regard for the future, and never change past choices.

Any problem that can be solved by a greedy algorithm can be solved by dynamic program-
ming, but not the other way around.

It is often hard to figure out when being greedy works!

How do we know if being greedy works? Try dynamic programming first and understand the
choices. Try to find out if there is a locally best choice, i.e. a choice that looks better than
the others (without computing recursive solutions to subproblems). Now try to prove that it
works correctly.

Greedy correctness proof: It is enough to prove that there exists an optimal solution which
contains the greedy choice. That is, prove that, having made the greedy choice, what remains
is a subproblem with the property that if we combine the optimal solution to the subproblem
with the greedy choice, we get an optimal solution for the original problem. Typically this is
proved by contradiction.

Example:

0 — 1 KNAPSACK PROBLEM: Given n items, with item i being worth $ v; and having weight
w; pounds, fill knapsack of capacity w pounds with maximal value.

FRACTIONAL KNAPSACK PROBLEM: As 0 — 1 KNAPSACK PROBLEM but we can take fractions
of items.

Problems appear very similar, but only FRACTIONAL KNAPSACK PROBLEM can be solved
greedily:

— Compute value per pound 5)—1 for each item

— Sort items by value per pound.



— Fill knapsack greedily (take objects in order)
\

O(nlogn) time, easy to show that solution is optimal.

e Example that 0 — 1 KNAPSACK PROBLEM cannot be solved greedily:
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Note: In FRACTIONAL KNAPSACK PROBLEM we can take % of $120 object and get $240

solution.
e 0 — 1 KNAPSACK PROBLEM can be solved in time O(n - w) using dynamic-programming

(homework).



