
CSci 231 Homework 2

1 Practice problems

These are intended to help you study. You do not need to turn them in.

1. What are the minimum and maximum number of elements in a heap of height h? Note: the
height of a heap is the number of edges on the longest root-to-leaf path.

2. Where in a min-heap might the largest element reside, assuming that all elements are distinct?

3. Is an array that is in sorted order a min-heap?

4. What is the effect of calling MIN-HEAPIFY(A, i) for i > size[A]/2?

5. What is the running time of Quicksort when all elements of arrary A have the same value?

6. Briefly sketch why the runnning time of Quicksort is Θ(n2) when the arrary A contains
distinct elements and is sorted in decreasing order.

7. Argue that for any constant 0 < α ≤ 1/2, the probability is approximately 1− 2α that on a
random input array, PARTITION produces a split more balanced that (1− α)-to-α.

8. Professors Dewey, Cheatham, and Howe have proposed the following “elegant” sorting algo-
rithm:

Stooge-Sort(A, i, j)
if A[i] > A[j]

then exchange A[i]↔ A[j]
if i + 1 ≥ j

then return
k ← b(j − i + 1)/3c
Stooge-Sort(A, i, j − k)
Stooge-Sort(A, i + k, j)
Stooge-Sort(A, i, j − k)

a. Argue that Stooge-Sort(A, 1, length[A]) correctly sorts the input array A[1..n], where
n = length[A].

b. Give a recurrence for the worst-case running time of Stooge-Sort and a tight asymp-
totic (Θ-notation) bound on the worst-case running time.

c. Compare the worst-case running time of Stooge-Sort with that of insertion sort, merge
sort, heapsort, sock sort, and quicksort. Do the professors deserve praise?



9. Which of the following sorting algorithms are stable: insertion sort, merge sort, quicksort?
Give a simple scheme that makes any sorting algorithm stable. How much additional time
and space does your scheme entail?

10. Suppose that you have a “black-box” worst-case linear-time median subroutine. Give a simple,
linear-time algorithm that solves the selection problem SELECT(i) for an arbitrary i.

11. Illustrate the operation of BUCKET-SORT on the array

A = [.79, .13, .16, .64, .39, .20, .89, .53, .71, .42]

2 Homework

1. Give an O(n lg k)-time algorithm to merge k sorted lists into one sorted list, where n is the
total number of elements in all the input lists.

2. Given a set of n numbers, we wish to find the i largest in sorted order using a comparison-
based algorithm. Find the algorithm that implements each of the following methods with the
best asymptotic worst-case running time, and analyze the running times of the algorithms on
terms of n and i.

(a) Sort the numbers, and list the i largest.

(b) Build a max-priority queue from the numbers, and call EXTRACT-MAX i times.

(c) Use a SELECT algorithm to find the ith largest number, partition around that number,
and sort the i largest numbers.

3. Consider an array A of length n for which we know that A[1] ≥ A[2] and A[n − 1] ≤ A[n].
We say that A[x] is a local minimum if A[x − 1] ≥ A[x] and A[x] ≤ A[x + 1]. Note that A
must have at least one local minimum.

Local minima

1 2 n

We can obviously find a local minimum in O(n) time by scanning through A. Describe an
O(log n) algorithm for finding a local minimum.

4. Describe an O(n) algorithm that, given a set S of n distinct numbers and a positive integer
k ≤ n, determines the k numbers in S that are closest (in value) to the median of S.

2



5. Let A be a list of n (not necessarily distinct) integers. Describe an O(n)-algorithm to test
whether any item occurs more than dn/2e times in A. Your algorithm should use O(1)
additional space.

6. Give an O(n lg k) algorithm to find the k − 1 elements in a set that partition the set into
(approx.) k equal-sized sets A1, A2, . . . Ak such that all elements in Ai are smaller than all
elements in Ai+1. Assume k is a power of 2.

7. Show how to sort n integers in the range 1 to n2 in O(n) time.

3


