
CSci 231 Homework 10 Solutions
∗

Basic Graph Algorithms

1. [CLRS 22.1-1] Describe how to compute the in-degree and out-degree of the vertices
of a graph given its (1) adjacency -list representation and (b) adjacency-matrix repre-
sentation.

Solution: Given an adjacency-list representation Adj of a directed graph, the out-
degree of a vertex u is equal to the length of Adj[u], and the sum of the lengths of all
the adjacency lists in Adj is |E|. Thus the time to compute the out-degree of one vertex
is Θ(|Adj(v)|) and for all vertices is Θ(V + E). The in-degree of a vertex u is equal to
the number of times it appears in all the lists in Adj. If we search all the lists for each
vertex, the time to compute the in-degree of all vertices is Θ(V E). Alternatively, we
can allocate an array T of size |V | and initialize its entries to zero. Then we only need
to scan the lists in Adj once, incrementing T [u] when we see u in the lists. The values
in T will be the in-degrees of every vertex. This can be done in Θ(V + E) time with
Θ(V ) additional storage.

The adjacency-matrix A of any graph has Θ(V 2) entries, regardless of the number
of edges in the graph. For a directed graph, computing the out-degree of a vertex
u is equivalent to scanning the row corresponding to u in A and summing the ones,
so that computing the out-degree of every vertex is equivalent to scanning all entries
of A. Thus the time required is Θ(V ) for one vertex, and Θ(V 2) for all vertices.
Similarly, computing the in-degree of a vertex u is equivalent to scanning the column

corresponding to u in A and summing the ones, thus the time required is also Θ(V )
for one vertex, and Θ(V 2) for all vertices.

2. [CLRS 22.1-5] Give and analyse an algorithm for computing the square of a directed
graph G given in (a) adjacency-list representation and (b) adjacency-matrix represen-
tation.

Solution: To compute G2 from the adjacency-list representation Adj of G, we perform
the following for each Adj[u]:

for each vertex v in Adj[u]
for each vertex w in Adj[v]

edge(u, w) ∈ E2

insert w in Adj2(u)
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where Adj2 is the adjacency-list representation of G2. For every edge in Adj we scan
at most |V | vertices, thus we compute Adj2 in time O(V E).

After we have computed Adj2, we have to remove any duplicate edges from the lists
(there may be more than one two-edge path in G between any two vertices). Removing
duplicate edges is done in O(V +E ′) where E ′ = O(V E) is the number of edges in Adj2
(see for instance problem CLRS 22.1-4). Thus the total running time is O(V E)+O(V +
E ′)= O(V E).

Let A denote the adjacency-matrix representation of G. The adjacency-matrix repre-
sentation of G2 is the square of A. Computing A2 can be done in time O(V 3) (and even
faster, theoretically; Strassen’s algorithm for example will compute A2 in O(V lg 7)).

3. (CLRS 22.1-7) The incidence matrix of a directed graph G = (V, E) is a |V | × |E|
matrix B = [bij ] such that

bij =











−1 if edge j leaves vertex i

1 if edge j enters vertex i

0 otherwise

Describe what the entries of the matrix product B × BT represent, where BT is the
transpose of B.

Solution:

BBT (i, j) =
∑

e∈E bieb
T
ej =

∑

e∈E biebje

If i = j then biebje = 1 (it is 1 · 1 or −1 · −1) whenever i enters or leaves vertex i, and
0 otherwise.

If i 6= j, then biebje = −1 when e = (i, j) or e = (j, i) and 0 otherwise.

Thus

BBT (i, j) =

{

indegree(i) + outdegree(i) if i = j

−(nb of edges connecting i and j) if i 6= j

4. (CLRS 22.2-3) Analyse BFS running time if the graph is represented by an adjacency-
matrix.

Solution: If the input graph for BFS is represented by an adjacency-matrix A and
the BFS algorithm is modified to handle this form of input, the running time will be
the size of A, which is Θ(V 2). This is because we have to modify BFS to look at every
entry in A in the for loop of the algorithm, which may or may not be an edge.

5. (CLRS 22.2-8) Consider an undirected connected grah G. Give an O(V +E) algorithm
to compute a path that traverses each edge of G exactly once in each direction.

Solution: Perform a DFS of G starting at an arbitrary vertex. The path required by
the problem can be obtained from the order in which DFS explores the edges in the
graph. When exploring an edge (u, v) that goes to an unvisited node the edge (u, v)
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is included for the first time in the path. When DFS backtracks to u again after v is
made BLACK, the edge (u, v) is included for the 2nd time in the path, this time in
the opposite direction (from v to u). When DFS explores an edge (u, v) that goes to
a visited node (GRAY or BLACK) we add (u, v)(v, u) to the path. In this way each
edge is added to the path exactly twice.

6. (CLRS 22.4-3) Given an undirected graph G = (V, E) determine in O(V ) time if it has
a cycle.

Solution: There are two cases:

(a) E < V : Then the graph may or may not have cycles. To check do a graph traversal
(BFS or DFS). If during the traveral you meet an edge (u, v) that leads to an
already visited vertex (GRAY or BLACK) then you’ve gotten a cycle. Otherwise
there is no cycle. This takes O(V + E) = O(V ) (since E < V ).

(b) E ≥ V : In this case we will prove that the graph must have a cycle.

Claim 1: A tree of n nodes has n − 1 edges.

Proof of claim 1: By induction. Base case: a tree of 1 vertex has 0 edges. ok.
Assume inductively that a tree of n vertices has n − 1 edges. Then a tree T of
n + 1 vertices consists of a tree T ′ of n vertices plus another vertex connected to
T ′ through an edge. Thus the number of edges in T is the number of edges in T ′

plus one. By induction hyopthesis T ′ has n − 1 edges so T has n edges. qed.

Coming back to the problem: Assume first that the graph G is connected. Perform
a DFS traversal of G starting at an arbitrary vertex. Since the graph is connected
the resulting DFS-tree will contain all the vertices in the graph. By Claim 1 the
DFS-tree of G has V − 1 edges. Therefore since E ≥ V there will be at least an
edge in G which is not in the DFS-tree of G. This edge gives a cycle in G.

If the graph G is not connected: If G has 2 connected components G1 = (V1, E1)
and G2 = (V2, E2). Then it is easy to prove, by contradiction, that E ≥ V implies
that either E1 ≥ V1 or E2 ≥ V2 (or both). In either case either G1 will have a
cycle or G2 will have a cycle (or both).

(If the graph G is not connected and has k connected components then the same
argument as above works, except that formally we need induction on k).

7. (CLRS 22.4-5) Give an algorithm to compute topological order of a DAG without using
DFS.

Solution: We can perform topological sorting on a directed acyclic graph G using the
following idea: repeatedly find a vertex of in-degree 0, output it, and remove it and all
of its outgoing edges from the graph. To implement this idea, we first create an array
T of size |V | and initialize its entries to zero, and create an initially empty stack S.
Let Adj denote the adjacency-list representation of G. We scan through all the edges
in Adj, incrementing T [u] each time we see a vertex u. In a directed acyclic graph
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there must be at least one vertex of in-degree 0, so we know that there is at least one
entry of T that is zero. We scan through T a second time and for every vertex u such
that T [u] = 0, we push u on S. Pop S and output u. When we output a vertex we
do as follows: for each vertex v in Adj[u] we decrement T [v] by one. If any of these
T [v] = 0, then push v on S.

To show our algorithm is correct: At each step there must be at least one vertex with
in-degree 0, so the stack is never empty, and every vertex will be pushed and popped
from the stack once, so we will output all the vertices. For a vertex v with in-degree
k ≥ 1, there are k vertices u1, u2, . . . uk which will appear before v in the linear ordering
of G. Then T [v] = k, since v ∈ Adj[ui] for i = 1, . . . , k vertices of G, and v will only
be pushed on the stack after all ui have already been popped (each pop decrements
T [v] by one).

The running time is Θ(V ) to initialize T , O(1) to initialize S, and Θ(E) to scan the
edges of E and count in-degrees. The second scan of T is Θ(V ). Every vertex will be
pushed and popped from the stack exactly once. The |E| edges are removed from the
graph once (which corresponds to decrementing entries of T Θ(E) times). This gives
a total running time of Θ(V )+O(1)+Θ(E)+Θ(V )+Θ(E) = Θ(V + E).

If the graph has cycles, then at some point there will be no zero entries in T , the stack
will be empty, and our algorithm cannot complete the sort.

8. (CLRS 22-4) Let G = (V, E) be a directed grah in which each vertex u ∈ V is labeled
with a unique integer L(u) from the set {1, 2, ..., |V |}. For each vertex u ∈ V , let
R(u) = {v ∈ V |u reaches v} be the set of vertices that are reachable from u. Define
min(u) to be the vertex in R(u) whose label is minimum, i.e. min(u) is the vertex
v such that L(v) = min{L(w)|W ∈ R(u)}. Give an O(V + E)-time algorithm that
computes min(u) for all vertices u ∈ V .

Solution: One solution is to compute the strongly connected components of the graph
and erase all but the smallest label vertex in each component C; let this vertex be
denoted w(C). For every edge (u, v) with u not in the C and v in C add an edge
(u, w). For every edge (v, u) with v in C and u not in C add an edge (w, u).(this
process is called contracting C to a single vertex w). The resulting graph is a DAG.
This DAG can be computed in O(V +E) time (since strongly connnected components
can be computed in O(V + E) time). So we reduced the problem to the same problem
on a DAG. Now it is simple: traverse the graph in reverse topological order. Initially
every vertex has min(u) = u. For every vertex u look at its outgoing edges (u, v) and
update min(u) = min{min(v)|(u, v)}. Since We traverse vertices in reverse topological
order all outgoing vertices (u, v) of u will have already found their final label min(v).

A much simpler way to solve this problem (without worrying about strongly connected
compoenents) is to traverse the graph (either BS or DFS) but looking at the incoming

edges rather than at outgoing edges, while processing vertices in increasing order of
their label. The formal way to say this is as follows: compute a reverted graph GT
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which is the same as G but with the direction of every edges reverted. This graph can
be easily computed in linear time O(V + E). Then

sort vertices in increasing order of their label

for each v in order do

if v not black then BFS(v)

That is, first perform BFS(1); this will visit all vertices reachable from 1 in GT (that
is, which can reach 1 in G) and set their min(u) = 1. Then find the next smallest node
that has not been reached in the previous BFS and start BFS from it, and so on.

This in total takes O(V ) to sort the vertices (using a linear-time sorting algrithm) and
O(V + E) to do the graph traversal (BFS or DFS).
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