
CSci 231 Homework 4

Selection and Divide-and-conquer

CLRS Chapter 9

- 1. (CLRS 9.3-5) Suppose that you have a "black-box" worst-case linear-time median subroutine. Give a simple, linear-time algorithm that solves the selection problem SELECT(i) for an arbitrary i.
- 2. (CLRS 9.3-7) Describe an O(n) algorithm that, given a set S of n distinct numbers and a positive integer $k \leq n$, determines the k numbers in S that are closest to the median of S.
- 3. Let A be a list of n (not necessarily distinct) integers. Describe an O(n)-algorithm to test whether any item occurs more than $\lceil n/2 \rceil$ times in A. Your algorithm should use O(1) additional space.
- 4. (CLRS 9.3-6) Give an $O(n \lg k)$ algorithm to find the k-1 elements in a set that partition the set into (approx.) k equal-sized sets A_1, A_2, \ldots, A_k such that all elements in A_i are smaller than all elements in A_{i+1} . Assume k is a power of 2.
- 5. CLRS 2-4 (The inversion problem).
- 6. Consider an array A of length n for which we know that $A[1] \ge A[2]$ and $A[n-1] \le A[n]$. We say that A[x] is a *local minimum* if $A[x-1] \ge A[x]$ and $A[x] \le A[x+1]$. Note that A must have at least one local minimum.

We can obviously find a local minimum in O(n) time by scanning through A. Describe an $O(\log n)$ algorithm for finding a local minimum.