Subtext of today's lecture (and this course)

Steps to developing a usable algorithm.
¢ Define the problem.

)) ° e Find an algorithm to solve it.
Union-Find Algorithms "+ Fost enovgh?
e If not, figure out why.
e Find a way to address the problem.
¢ Tterate until satisfied.

The scientific method

» network connectivity
4 qU|Ck find Mathematical models and computational complexity
» quick union
» improvements
» applications

READ Chapter One of Algs in Java

Network connectivity

Basic abstractions

* set of objects

e union command: connect two objects

e find query: is there a path connecting one object to another?

» network connectivity

Objects

Union-find applications involve manipulating objects of all types.
e Computers in a hetwork.
e Web pages on the Internet.
e Transistors in a computer chip.
e Variable name aliases.

. . L. stay tuned
e Pixels in a digital photo. 47
* Metallic sites in a composite system.
When programming, convenient to name them O to N-1. _
¢ Hide details not relevant to union-find. / use as array index
¢ Integers allow quick access to object-related info.
e Could use symbol table to translate from object names

Union-find abstractions
Simple model captures the essential nature of connectivity.

e Objects.

0 1 2 3 4 5 6 7 8 9 grid points

¢ Disjoint sets of objects.

0 1 {239} {561} 7 {48} subsets of connected grid points

¢ Find query: are objects 2 and 9 in the same set?

0 1 {239} {5-6} 7 { 4-8} are two grid points connected?

¢ Union command: merge sets containing 3 and s.

add a connection between

1 234 - g
0 { 3 891} {5-61} two grid points

Connected components
Connected component: set of mutually connected vertices

Each union command reduces by 1 the number of components

"8
=]

out @ @ @ 9

34 34

49 49

8 0 8 0

23 23 @ ©) 1
56 5 6 3 = 10-7 components —>

29

59 59

73 73

N

7 union commands

Network connectivity: larger example

find(u, v) ?

Network connectivity: larger example

find(u, v) ?

63 components

true

» quick find

Union-find abstractions

* Objects.
¢ Disjoint sets of objects.
e Find queries: are two objects in the same set?

¢ Union commands: replace sets containing fwo items by their union

Goal. Design efficient data structure for union-find.

e Find queries and union commands may be intermixed.
¢ Number of operations M can be huge.

¢ Number of objects N can be huge.

Quick-find [eager approach]

Data structure.
¢ Integer array id[] of size n.
e Interpretation: p and q are connected if they have the same id.

~ 3

5 and 6 are connected
2,3,4,and 9 are connected

[
oo
(S
© N
©w
('S
o v
oo
w
© ©

Quick-find [eager approach]

Data structure.
¢ Integer array id[] of size N.

e Interpretation: p and q are connected if they have the same id.

H
o
=
N
w

o s

o U

o o0

~N 3
-]
©

Find. Check if p and q have the same id.

Union. To merge components containing p and q,
change all entries with id(p] to id[q].

SENR

problem: many values can change

5 and 6 are connected
2,3,4,and 9 are connected

id[3]=9:id[6]= 6
3 and 6 not connected

union of 3 and 6
2,3,4,5,6,and 9 are connected

Quick-find example

@@@8@@@@
@@@@@@
@@@@@
@@@@
O A
®estwn” 8
® eaB v b
0] (0)

OTBD G © VOO

problem: many values can change _ (1) -
CTOT © OO

Quick-find: Java implementation

public class QuickFind
{

private int[] id;

public QuickFind(int N)
{
id = new int[N];
for (int i = 0; i < N; i++)
id[i] = i;

}

public boolean find(int p, int q)
{

return id[p] == id[q];
}

public void unite(int p, int q)
{
int pid = id[p];
for (int i = 0; i < id.length; i++)
if (id[i] == pid) id[i] = id[q];

set id of each
object to itself

1 operation

N operations

Quick-find is too slow

Quick-find algorithm may take ~MN steps
to process M union commands on N objects

Rough standard (for now).

* 10° operations per second.
e 10° words of main memory. / a fruism (roughly) since 1950 |
* Touch all words in approximately 1 second.
Ex. Huge problem for quick-find.

* 10'° edges connecting 10° nodes.

* Quick-find takes more than 10*° operations.
* 300+ years of computer timel

Paradoxically, quadratic algorithms get worse with newer equipment.
¢ New computer may be 10x as fast.

e But, has 10x as much memory so problem may be 10x bigger.

e With quadratic algorithm, takes 10x as long!

Quick-union [lazy approach]

Data structure.
e Integer array id[] of size n.
e Interpretation: id[i] is parent of i.

/ keep going until it doesn't change
e Roof of i iS id[id[id[...id[i]...]]1.

i 0
id[i] O

ORONO i@
® ®

3

12 3 456 7 8 9
1 9 4 9 6 6 7 8 9
Find. Check if p and q have the same root.

3'sroot is 9; 5's root is 6
3 and 5 are not connected

Union. Set the id of q's root to the id of p's root.

OJONO
® ®E

@ @

©oN
=W
o s
o u
w
©w

~ 3

—> W o

only one value changes

Quick-union [lazy approach]

Data structure.
¢ Integer array id[] of size w.
e Interpretation: id[i] is parent of i.

e Root of i iS id[id[id[...id[i]...]]].

/ keep going until it doesn't change

© O @

Soe

3

3'sroot is 9; 5's root is 6

Quick-union example

@@@8@@@@@

®®®§®®®©

@@@@@g
®

o ® @@@
@0 ®

®
° 8,88

~ problem: trees can get tall

20

Quick-union: Java implementation

public class QuickUnion
private int[] id;
public QuickUnion (int N)
id = new int[N];
for (int i = 0; i < N; i++) id[i] = i;
}
private int root(int i)
{

while (i !'= id[i]) i = id[i]; :Lm;ep:t\p:;fiional
return i; P

public boolean find(int p, int q)
{

return root(p) == root(q); Ii,mfef,:f."fmﬂq
}

public void unite(int p, int q)

int i = root ;
int j = rootzzg ; time proportional
id[i] = j; to depth of pand q

}

21

Quick-union is also too slow

Quick-find defect.
¢ Union too expensive (N steps).
e Trees are flat, but too expensive to keep them flat.

Quick-union defect.

e Trees can get tall.

e Find too expensive (could be N steps)
¢ Need to do find to do union

algorithm union find
Quick-find N 1
Quick-union N* N «<—— worst case

* includes cost of find

22

» improvements

23

Improvement 1: Weighting

Weighted quick-union.

¢ Modify quick-union to avoid tall trees.

¢ Keep track of size of each component.

e Balance by linking small tree below large one.

Ex. Union of 5 and 3.
* Quick union: link 9 to s.
* Weighted quick union: link 6 fo 9.

size 1 1 4
©@ ©® @
® ©®

24

Weighted quick-union example

@@@@@@@

@@@ﬂ@@@

@@@@@

@@@@

5-6 8133355783
®0 z ®@
009
59 8133335783 00 & ©
@®0©
7-3 8133335383 ©
@0 @
4-8 8133335333 90309
6-1 8333335333 09/096\09
@ ®
//o\\
no problem: trees stay flat ———— > @@ @ @ ® DO
® ®

25

Weighted quick-union: Java implementation

Java implementation.

¢ Almost identical to quick-union.

¢ Maintain extra array sz[] to count number of elements
in the tree rooted at i.

Find. Identical fo quick-union.

Union. Modify quick-union to
¢ merge smaller tree into larger tree
e update the sz[] array.

if (sz[i] < sz[j]) { id[i]
else { id[3]

j; sz[j] += sz[i]; }
i; sz[i] += sz[jl; }

26

Weighted quick-union analysis

Analysis.

e Find: takes time proportional to depth of v and «.
e Union: takes constant time, given roots.

e Fact: depth is at most Ig N. [needs proof]

Data Structure Union Find
Quick-find N 1
Quick-union N* N

Weighted QU Ig N * IgN

* includes cost of find

Stop at guaranteed acceptable performance? No, easy to improve further.

27

Improvement 2: Path compression

Path compression. Just after computing the root of i,
set the ia of each examined node to root(i).

28

Weighted quick-union with path compression

Path compression.

¢ Standard implementation: add second loop to root () to set
the id of each examined node to the root.

e Simpler one-pass variant: make every other node in path
point to its grandparent.

public int root(int i)
{
while (i !'= id[i])

id[i] = id[id[i]];
i = id[i];

only one extra line of code !

}

return i;

In practice. No reason not to!l Keeps tree almost completely flat.

29

Weighted quick-union with path compression

@@@@@@@@

®®®G§§6®®®

goo @ 000
®.='®©®
®.=.®

® A @
7-3 8133335383 © O
4-8 8133335333 ® A
© WO
®
6-1 8 333333333
) @
OT® OO
O] ®

1)

no problem: trees stay VERY flat ————> @ OZOEORONCAGRO
®

30

WQUPC performance

Theorem. Starting from an empty data structure, any sequence

of M union and find operations on N objects takes O(N + M Ig* N) time.
e Proof is very difficult. T

e But the algorithm is still simple! number/of times needed to take
the Ig of a number until reaching 1

Linear algorithm?
e Cost within constant factor of reading in the data.

e In theory, WQUPC is not quite linear. T IQ*ON
e Inpractice, WQUPC is linear. | 5 .
i .
because Ig* N is a constant 16 3
in this universe 65536 4
265536 5

Amazing fact:
e In theory, no linear linking strategy exists

31

Summary
Algorithm Worst-case time
Quick-find MN
Quick-union MN
Weighted QU N+ Mlog N
Path compression N+ Mlog N
Weighted + path (M +N)Ig* N

M union-find ops on a set of N objects

Ex. Huge practical problem.

* 10%° edges connecting 10° nodes.

¢ WQUPC reduces time from 3,000 years to 1 minute.
e Supercomputer won't help much.

¢ Good algorithm makes solution possible.

WQUPC on Java cell phone beats QF on supercomputer!

Bottom line.
WQUPC makes it possible to solve problems
that could not otherwise be addressed

32

» applications

Bs

Percolation

A model for many physical systems

¢ N-by-N grid.

¢ Each square is vacant or occupied.

e Grid percolates if top and bottom are connected by vacant squares.

|
[] ‘.L - u "
—
'l
- - u
= C R
percolates does not percolate
model system vacant site occupied site percolates

electricity material conductor insulated conducts
fluid flow material empty blocked porous

social interaction population person empty communicates

35

Union-find applications

¥ Network connectivity.

e Percolation.

¢ Image processing.

* Least common ancestor.

e Equivalence of finite state automata.

¢ Hinley-Milner polymorphic type inference.

e Kruskal's minimum spanning tree algorithm.
* Games (6o, Hex)

e Compiling equivalence statements in Fortran.

34

Percolation phase transition

Likelihood of percolation depends on site vacancy probability p

L n
L "% "
Ty
==L
- 'ﬁ [
4L .!: -
L
p low: does not percolate p high: percolates

14
Experiments show a threshold p*
e p > p*: almost certainly percolates percolation
* p < p*: almost certainly does not percolate probability

Q. What is the value of p* ? or i T
p*

site vacancy probability p

36

UF solution to find percolation threshold

e Initialize whole grid o be “not vacant”
¢ Implement "make site vacant” operation
that does union () with adjacent sites
¢ Make all sites on top and bottom rows vacant
¢ Make random sites vacant until £ind (top, bottom)
¢ Vacancy percentage estimates p*

10 11 12

nwmaaamnxwmn
14 28 29 30 31 33 34 35 36“
B> BB«

54 55 56 57 n.. B oot

IIIIIIIIII.I

bottom

37

Percolation

Q. What is percolation threshold p* ?
A. about 0.592746 for large square lattices.
T

percolation constant known
only via simulation

E
-.!IJ
.-"

percolates does not percolate

Q. Why is UF solution better than solution in IntroProgramming 2.4?

38

Hex

Hex. [Piet Hein 1942, John Nash 1948, Parker Brothers 1962]

¢ Two players alternate in picking a cell in a hex grid.

e Black: make a black path from upper left to lower right.
e White: make a white path from lower left to upper right.

Reference: http://mathworld.wolfram.com/GameofHex.html

Union-find application. Algorithm to detect when a player has won.

39

Subtext of today's lecture (and this course)

Steps to developing an usable algorithm.
¢ Define the problem.

e Find an algorithm to solve it.

¢ Fast enough?

e If not, figure out why.

e Find a way to address the problem.

e Tterate until satisfied.

The scientific method

Mathematical models and computational complexity

READ Chapter One of Algs in Java

40

