Union-Find Algorithms

- ▶ network connectivity
- quick find
- quick union
- **improvements**
- **applications**

Subtext of today's lecture (and this course)

Steps to developing a usable algorithm.

- Define the problem.
- Find an algorithm to solve it.
- Fast enough?
- If not, figure out why.
- Find a way to address the problem.
- Iterate until satisfied.

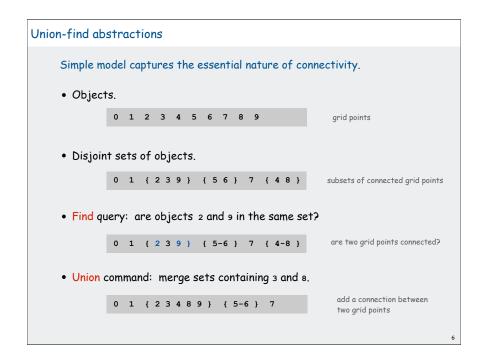
The scientific method

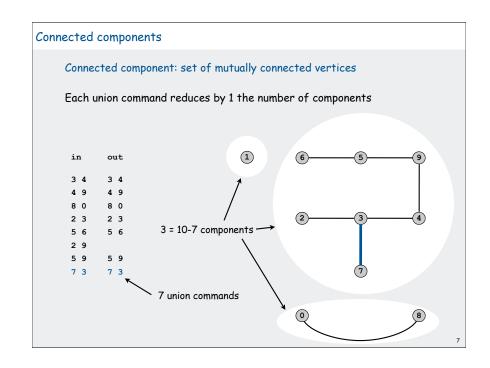
Mathematical models and computational complexity

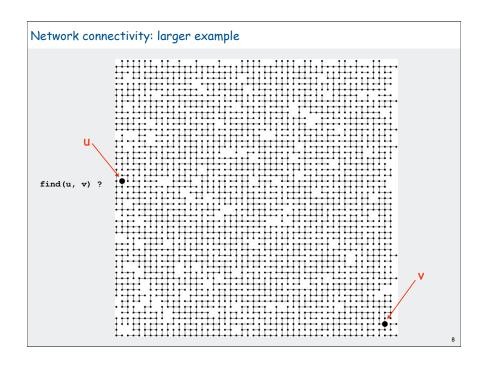
READ Chapter One of Algs in Java

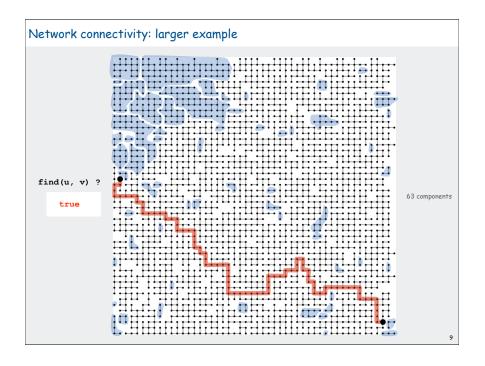
Network connectivity

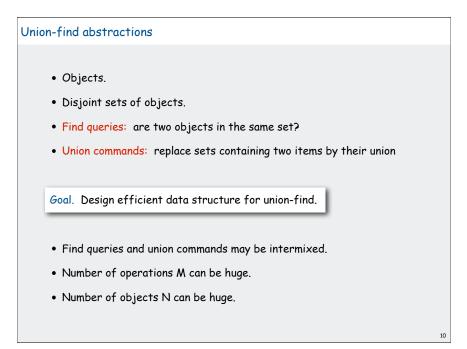
Basic abstractions

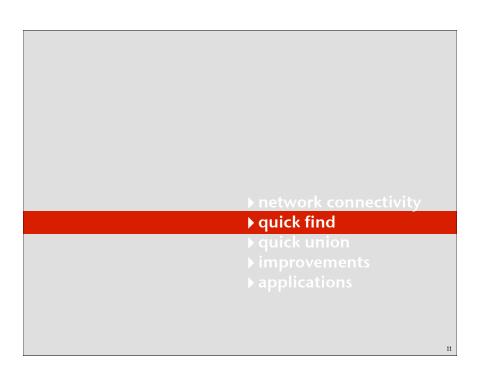

- · set of objects
- union command: connect two objects
- find query: is there a path connecting one object to another?


y: is there a path connecting one object to ar

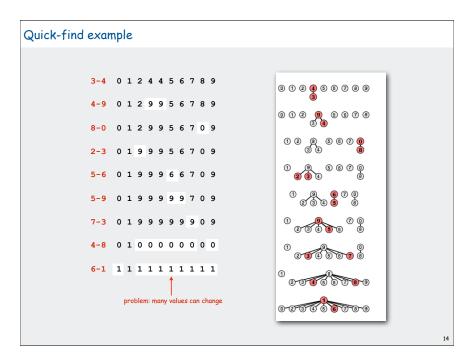

▶ quick find

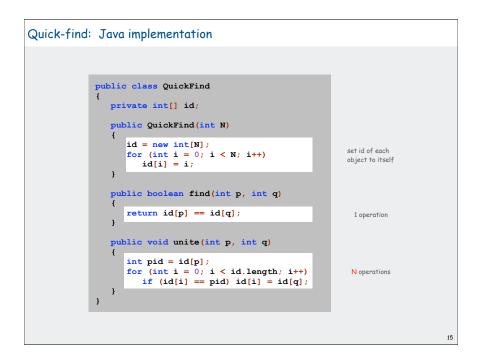

▶ network connectivity


Union-find applications involve manipulating objects of all types. • Computers in a network. • Web pages on the Internet. • Transistors in a computer chip. • Variable name aliases. • Pixels in a digital photo. • Metallic sites in a composite system. When programming, convenient to name them 0 to N-1. • Hide details not relevant to union-find. • Integers allow quick access to object-related info. • Could use symbol table to translate from object names



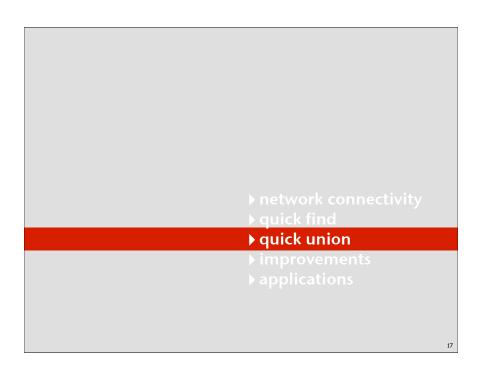
Quick-find [eager approach]

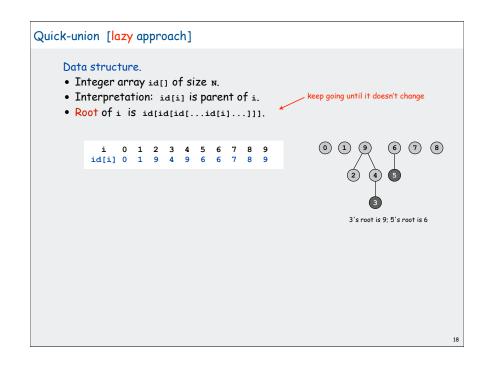

Data structure.

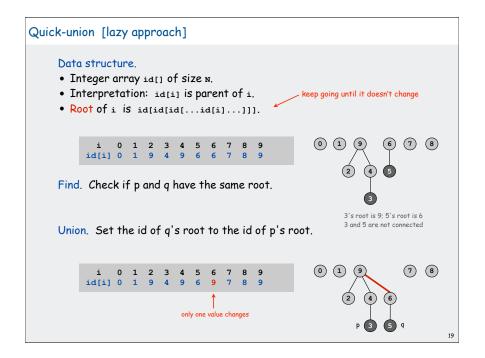

• Integer array ia[] of size N.

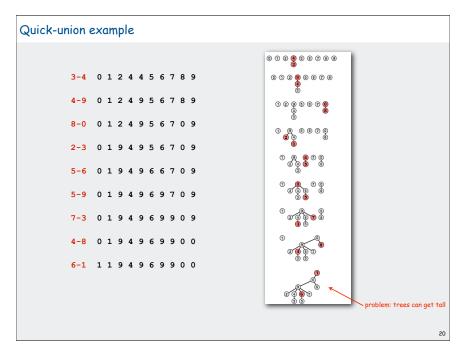
• Interpretation: p and q are connected if they have the same id.

i 0 1 2 3 4 5 6 7 8 9 5 and 6 are connected id[i] 0 1 9 9 9 6 6 7 8 9 2,3,4, and 9 are connected

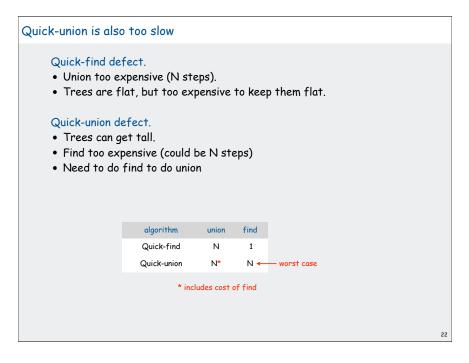

Quick-find [eager approach] Data structure. • Integer array id[] of size N. • Interpretation: p and q are connected if they have the same id. i 0 1 2 3 4 5 6 7 8 9 5 and 6 are connected id[i] 0 1 9 9 9 6 6 7 8 9 2, 3, 4, and 9 are connected Find. Check if p and q have the same id. id[3] = 9; id[6] = 6 3 and 6 not connected Union. To merge components containing p and q, change all entries with id[p] to id[q]. i 0 1 2 3 4 5 6 7 8 9 union of 3 and 6 id[i] 0 1 6 6 6 6 6 7 8 6 2.3.4.5.6. and 9 are connected problem: many values can change 13

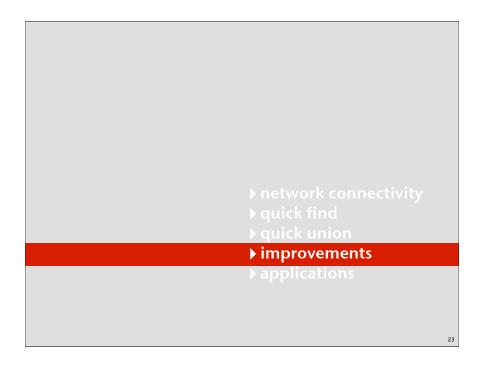


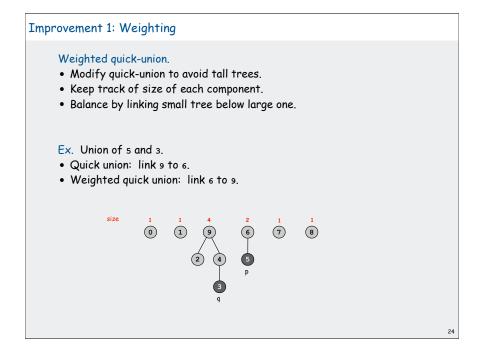


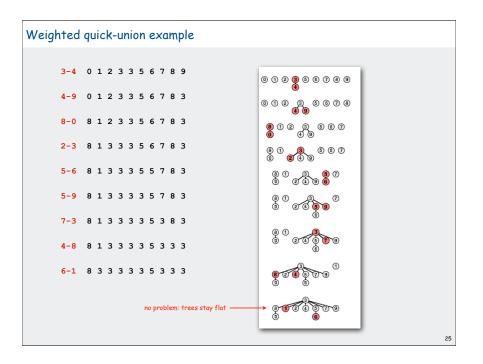

```
Quick-find is too slow
     Quick-find algorithm may take ~MN steps
     to process M union commands on N objects
     Rough standard (for now).
      • 109 operations per second.
                                                             a truism (roughly) since 1950!
      • 109 words of main memory.
      • Touch all words in approximately 1 second.
     Ex. Huge problem for quick-find.
      • 10<sup>10</sup> edges connecting 10<sup>9</sup> nodes.
      • Quick-find takes more than 1019 operations.
      • 300+ years of computer time!
     Paradoxically, quadratic algorithms get worse with newer equipment.
      • New computer may be 10x as fast.
      • But, has 10x as much memory so problem may be 10x bigger.

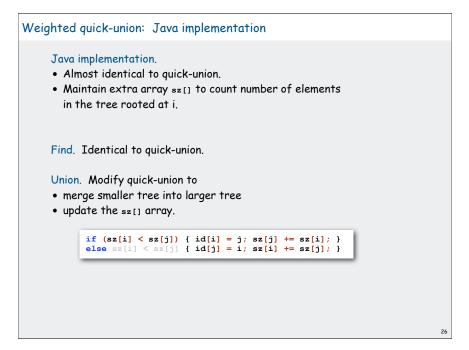
    With quadratic algorithm, takes 10x as long!
```










```
Quick-union: Java implementation
              public class QuickUnion
                 private int[] id;
                  public QuickUnion(int N)
                     id = new int[N];
                     for (int i = 0; i < N; i++) id[i] = i;
                 private int root(int i)
                                                                      time proportional
                     while (i != id[i]) i = id[i];
                                                                      to depth of i
                     return i;
                  public boolean find(int p, int q)
                                                                      time proportional
                     return root(p) == root(q);
                                                                      to depth of p and q
                 public void unite(int p, int q)
                     int i = root(p);
                                                                      time proportional
                    int j = root(q);
id[i] = j;
                                                                      to depth of p and q
                                                                                   21
```


Weighted quick-union analysis

Analysis.

- Find: takes time proportional to depth of p and q.
- Union: takes constant time, given roots.
- Fact: depth is at most lg N. [needs proof]

Data Structure	Union	Find
Quick-find	Ν	1
Quick-union	N *	Ν
Weighted QU	lg N *	lg N

* includes cost of find

Stop at guaranteed acceptable performance? No, easy to improve further.

Improvement 2: Path compression

Path compression. Just after computing the root of i, set the id of each examined node to root(i).

Weighted quick-union with path compression

Path compression.

- Standard implementation: add second loop to root() to set the id of each examined node to the root.
- Simpler one-pass variant: make every other node in path point to its grandparent.

```
public int root(int i)
{
    while (i != id[i])
    {
        id[i] = id[id[i]];
        i = id[i];
    }
    return i;
}
```

In practice. No reason not to! Keeps tree almost completely flat.

29

```
Weighted quick-union with path compression

3-4 0 1 2 3 3 5 6 7 8 9

4-9 0 1 2 3 3 5 6 7 8 3

8-0 8 1 2 3 3 5 6 7 8 3

2-3 8 1 3 3 3 5 5 7 8 3

5-6 8 1 3 3 3 3 5 5 7 8 3

5-9 8 1 3 3 3 3 5 5 7 8 3

7-3 8 1 3 3 3 3 5 3 3 3

4-8 8 1 3 3 3 3 3 3 3 3 3 3 3

6-1 8 3 3 3 3 3 3 3 3 3 3 3 3
```

WQUPC performance Theorem. Starting

Theorem. Starting from an empty data structure, any sequence of M union and find operations on N objects takes $O(N + M \lg^* N)$ time.

- Proof is very difficult.
- But the algorithm is still simple!

number of times needed to take the lg of a number until reaching 1

Linear algorithm?

- Cost within constant factor of reading in the data.
- In theory, WQUPC is not quite linear.
- In practice, WQUPC is linear.

because lg* N is a constant in this universe N | g* N | 1 0 | 2 1 | 4 2 | 16 3 | 65536 4 | 265536 5

Amazing fact:

• In theory, no linear linking strategy exists

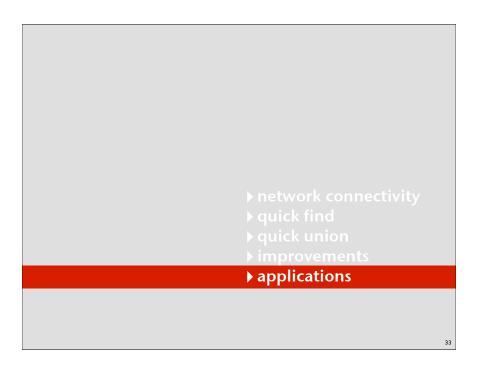
Summary

Algorithm	Worst-case time	
Quick-find	MN	
Quick-union	MN	
Weighted QU	N + M log N	
Path compression	N + M log N	
Weighted + path	(M + N) lg* N	

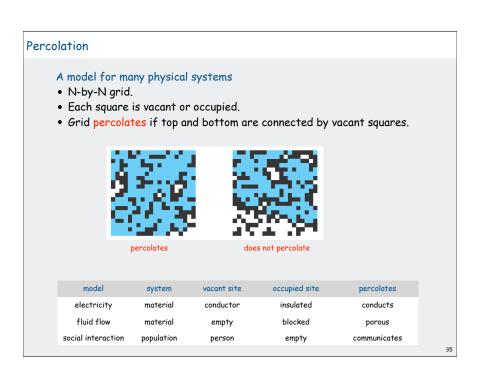
M union-find ops on a set of N objects

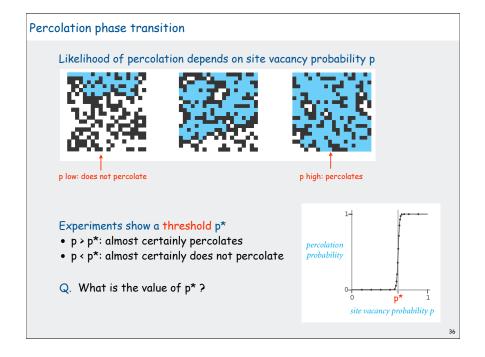
Ex. Huge practical problem.

- 10¹⁰ edges connecting 10⁹ nodes.
- WQUPC reduces time from 3,000 years to 1 minute.
- Supercomputer won't help much.

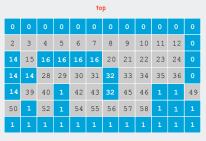

WQUPC on Java cell phone beats QF on supercomputer!

• Good algorithm makes solution possible.


Bottom line.


WQUPC makes it possible to solve problems that could not otherwise be addressed

32


Vnetwork connectivity. Percolation. Image processing. Least common ancestor. Equivalence of finite state automata. Hinley-Milner polymorphic type inference. Kruskal's minimum spanning tree algorithm. Games (Go, Hex) Compiling equivalence statements in Fortran.

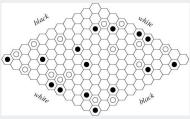
UF solution to find percolation threshold

- Initialize whole grid to be "not vacant"
- Implement "make site vacant" operation that does union () with adjacent sites
- Make all sites on top and bottom rows vacant
- Make random sites vacant until find (top, bottom)
- Vacancy percentage estimates p*

Percolation

- Q. What is percolation threshold p*?
- A. about 0.592746 for large square lattices.

only via simulation



Q. Why is UF solution better than solution in IntroProgramming 2.4?

Hex

Hex. [Piet Hein 1942, John Nash 1948, Parker Brothers 1962]

- Two players alternate in picking a cell in a hex grid.
- Black: make a black path from upper left to lower right.
- White: make a white path from lower left to upper right.

Reference: http://mathworld.wolfram.com/GameofHex.html

Union-find application. Algorithm to detect when a player has won.

Subtext of today's lecture (and this course)

Steps to developing an usable algorithm.

- Define the problem.
- Find an algorithm to solve it.
- Fast enough?
- If not, figure out why.
- Find a way to address the problem.
- · Iterate until satisfied.

The scientific method

Mathematical models and computational complexity

READ Chapter One of Algs in Java