Heaps. Heapsort.
(CLRS 6)

1 Introduction
e We have discussed several fundamental algorithms (sorting, selection, etc)
e We will now turn to data structures; They play an important role in algorithms design.

— Today we discuss priority queues and next time structures for maintaining ordered sets.

2 Priority Queue

e A priority queue supports the following operations on a set S of n elements:

— INSERT: Insert a new element e in S
— FINDMIN: Return the minimal element in S

— DELETEMIN: Delete the minimal element in S
e Sometimes we are also interested in supporting the following operations:

— CHANGE: Change the key (priority) of an element in S

— DELETE: Delete an element from S
e Priority queues have many applications, e.g. in discrete event simulation, graph algorithms
e We can obviously sort using a priority queue:

— Insert all elements using INSERT

— Delete all elements in order using FINDMIN and DELETEMIN

3 Priority Queue implementations

3.1 A Priority Queue with an Array or List

e The first implementation that comes to mind is ordered array:

‘1‘3‘5‘ 6‘ 7‘ 8‘ 9‘11‘12‘15‘17‘

— FINDMIN can be performed in O(1) time

— DELETEMIN and INSERT takes O(n) time since we need to expand/compress the array
after inserting or deleting element.

o If the array is unordered all operations take O(n) time.

e We could use double linked sorted list instead of array to avoid the O(n) expansion/compression
cost

— but INSERT can still take O(n) time.

3.2 A Priority Queue with a Heap
e The common way of implementing a priority queue is using a heap

e Heap definition:

— Perfectly balanced binary tree
* lowest level can be incomplete (but filled from left-to-right)
— For all nodes v we have key(v)>key(parent(v))

e Example:

e Heap can be implemented (stored) in two ways (at least)

— Using pointers
— In an array level-by-level, left-to-right
Example:

215|13[9(19/11|4|15|14

N@

x the left and right children of node in entry 7 are in entry 27 and 27 + 1, respectively
+ the parent of node in entry ¢ is in entry | %]

e Properties of heap:

— Height ©(logn)

— Minimum of S is stored in root
Operations:

— INSERT

x Insert element in new leaf in leftmost possible position on lowest level

* Repeatedly swap element with element in parent node until heap order is reestab-
lished (UP-HEAPIFY)
Example: Insertion of 4

— FINDMIN
* Return root element
— DELETEMIN

* Delete element in root
* Move element from rightmost leaf on lowest level to the root (and delete leaf)

x Repeatedly swap element with the smaller of the children elements until heap order
is reestablished (DOWN-HEAPIFY)

Example:

— CHANGE and DELETE can be handled similarly in O(logn) time

« Note: Assuming that we know the element to be changed/deleted (we cannot search
in a heap!!)

Correctness: Exercise.
Running time: All operations traverse at most one root-leaf path = O(logn) time.
Sorting using heap (HeapSort) takes ©(nlogn) time.

— n-O(logn) time to insert all elements (build the heap)

— n-O(logn) time to output sorted elements

Sometimes we would like to build a heap faster than O(nlogn)

— BUILDHEAP

* Insert elements in any order in perfectly balanced tree
* DOWN-HEAPIFY all nodes level-by-level, bottom-up

— Correctness:

* Induction on height of tree: When doing level ¢, all trees rooted at level ¢ — 1 are
heaps.

— Analysis:
* The leaves are at height 0, the root is at height logn
* n elements =< [5] leaves = [J5 | elements at height h
* Cost of DOWN-HEAPIFY on a node at height h is h
Total cost: > 18" h [ax] =0O(n) - Solog o
It can be shown that Ziogln o = O(1) = the total buildheap cost is O(n)

*

*

*

Computlng Zz 1 gh and Zz 1 2h
h _ _1

- Differentiate >7_, 2" = 1 15"" = ", respectively > oheo 2" = 7= (assuming |z| < 1)

CERoha Tl = i = Yo hat = 25 = Yoo 4 = gl = 0(1)

