
Practice problems: Augmented Red-Black Trees

1. (CLRS 13.1-6) What is the largest possible number of internal nodes in a red-black tree with
black-height k? What is the smallest possible number?

2. (CLRS 13-2) The join operation takes two dynamic sets S1 and S2 and an element x such
that for any x1 ∈ S1 and x2 ∈ S2, we have key[x1] ≤ key[x] ≤ key[x2]. It returns a set
S = S1 ∪ {x} ∪ S2. In this problem, we investigate how to implement the join operation on
red-black trees.

(a) Given a red-black tree T , we store its black-height as the field bh[T]. Argue that this
field can be maintained by RB-Insert and RB-Delete without requiring extra storage
in the tree and without increasing the asymptotic running times. Show while descending
through T , we can determine the black-height of each node we visit in O(1) time per
node visited.

We wish to implement the operation RB-Join(T1, x, T2) which destroys T1 and T2 and
returns a red-black tree T = T1 ∪ {x} ∪ T2. Let n be the total number of nodes in T1

and T2.

(b) Assume without loss of generality that bh[T1] ≥ bh[T2]. Describe an O(lg n) time al-
gorithm that finds a black node y in T1 with the largest key from among those nodes
whose black-height is bh[T2].

(c) Let Ty be the subtree rooted at y. Describe how Ty can be replaced by Ty ∪ {x} ∪ T2 in
O(1) time without destroying the binary-search-tree property.

(d) What color should we make x so that red-black properties 1, 2, and 4 are maintained?
Describe how property 3 can be enforced in O(lg n) time.

(e) Argue that the running time of RB-Join is O(lg n)

3. In this problem we consider a data structure for maintaining a multi-set M . We want to
support the following operations:

• Init(M): create an empty data structure M .

• Insert(M, i): insert (one copy of) i in M .

• Remove(M, i): remove (one copy of) i from M .

• Frequency(M, i): return the number of copies of i in M .

• Select(M,k): return the k’th element in the sorted order of elements in M .

If for example M consists of the elements
< 0, 3, 3, 4, 4, 7, 8, 8, 8, 9, 11, 11, 11, 11, 13 >

then Frequency(M, 4) will return 2 and Select(M, 6) will return 7.

Let |M | and ‖M‖ denote the number of elements and the number of different elements in M ,
respectively.

a) Describe an implementation of the data structure such that Init(M) takes O(1) time and
all other operations take O(log ‖M‖) time.

b) Design an algorithm for sorting a list L in O(|L| log ‖L‖) time using this data structure.

4. (Duke final spring 2001) We want to maintain a data structure D representing an infinite
array of integers under the following operations:

• Init(D): Create a data structure for an infinite array with all entries being zero.

• Lookup(D, x): Return the value of integer with index x.

• Update(D, x, k): Change the value of integer with index x to k.

• Max(D): Return the maximal index for which the corresponding integer is non-zero.

• Sum(D): Return the sum of all integers in the array.

Describe an implementation of D such that Init, Max, and Sum runs in O(1) time and
Lookup and Update in O(log n) time, where n is the number of non-zero integers in the
list.

5. (Duke final spring 2002) The mean M of a set of k integers {x1, x2, . . . xk} is defined as

M =
1

k

k∑

i=1

xi.

We want to maintain a data structure D on a set of integers under the normal Init, Insert,
Delete, and Find operations, as well as a Mean operation, defined as follows:

• Init(D): Create an empty structure D.

• Insert(D,x): Insert x in D.

• Delete(D,x): Delete x from D.

• Find(D,x): Return pointer to x in D.

• Mean(D,a, b): Return the mean of the set consisting of elements x in D with a ≤ x ≤ b.

(a) What does Mean(D,7, 17) return if D contains integers

(2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 27)?

(b) Describe how to modify a standard red-black tree in order to implement D such that
Init is supported in O(1) time and Insert, Delete, Find, and Mean are supported
in O(log n) time.

2

6. (Duke midterm spring 2001) In this problem we consider a data structure D for main-
taining bar-diagrams, where we have a bar of height h ≥ 0 associated with every non-negative
integer.

The following is an example of a bar-diagram:

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 181

We want to support the following operations:

• Init(D): Create a bar-diagram where all bars have height 0.

• Change(D,b,k): Add k to bar b (k can be negative but a bar cannot have negative
height).

• Height(D,b): Return the height of bar b.

• TotalSum(D): Return the sum of the height of all bars.

(a) Describe an implementation of D such that Init and TotalSum run in O(1) time and
Change and Height run in O(log n) time. Here n is the number of non-zero bars in
the diagram.

(b) Consider the problem of extending the data structure with operations PrefixSum and
IntervalSum as follows:

• PrefixSum(D,b2): Return the sum of the height of all bars b2 with b ≤ b2.

• IntervalSum(D,b1,b2): Return the sum of the height of all bars b such that b1 <

b ≤ b2.

Note that IntervalSum can easily be implemented using two calls to PrefixSum.
Describe an implementation of D such that Init and TotalSum run in O(1) time and
all other operations—including PrefixSum and IntervalSum—run in O(log n) time.

7. Consider a binary search tree in which each node v contains a key as well as an additional
value called addend. The addend of node v is implicitly added to all keys in the subtree
rooted at v (including v). Let (key, addend) denote the contents of any node v.

For example, the following tree contains the elements {5, 6, 7}:

(3,0) (4,1)

(4,2)

3

(a) Which elements does the following tree contain?

(-1,0) (2,0)

(6,4)

(0,2)

(0,1)

(15, -3)

(4,6) (10,7)

(7,0)

(b) Let h be the height of a tree as defined above. Describe how to perform the following
operations in O(h) time:

• FIND(x, T): return YES if element x is stored in tree T

• INSERT(x, T): inserts element x in tree T

• PUSH(x, k, T): add k to all elements ≥ x

(c) Describe how it can be insured that h = O(log n) during the above operations. (Hint:

show how to perform rotation)

8. Consider two balanced search trees T1 and T2 representing two sets of integers S1 and S2 with
n1 and n2 elements, respectively. Consider the problem of determining if S1 ⊆ S2 using T1

and T2.

(a) Describe an O(n1 log n2) time algorithm for determining if S1 ⊆ S2 using O(1) extra
space.

(b) Describe an O(n1+n2) time algorithm for determining if S1 ⊆ S2 using O(n1 +n2) extra
space.

(c) Describe an O(n1+n2) time algorithm for determining if S1 ⊆ S2 using O(log n1+log n2)
extra space.

9. In this problem we consider data structures for maintaining a matrix M. We want to support
the following operations:

• Init(M): create an empty matrix (zeros on all positions)

• Lookup(M, i, j): return the value at index (i, j) (i, j ≥ 0)

• Update(M, i, j, e): change the value at index (i, j) to e (i, j ≥ 0)

• Transpose(M): transpose the matrix (that is, element at index (i, j) becomes element
at index (j, i))

• Add(M): return the sum of the elements in M

Assume first that we are working on a n × n matrix.

4

(a) Describe a data structure such that Init runs in O(n2) time, and all other operations
run in O(1) time. (Hint: Does anything really need to be done when performing a
transpose?)

Assume now that the matrix is of arbitrary size.

(b) Describe a data structure such that Init runs in O(1) time, Lookup and Update in
O(lg k) time, and Transpose and Add in O(1) time, where k is the number of non-zero
entries in the matrix. (Hint: Maintain all non-zero elements in a row in a red-black tree)

10. (Duke final spring 2000) In this problem we consider divide-and-conquer algorithms for
building a heap H on n elements given in an array A. Recall that a heap is an (almost)
perfectly balanced binary tree where key(v) ≥ key(parent(v)) for all nodes v. We assume
n = 2h − 1 for some constant h, such that H is perfectly balanced (leaf level is “full”).

First consider the following algorithm SlowHeap(1, n) which constructs (a pointer to) H by
finding the minimal element x in A, making x the root in H, and recursively constructing
the two sub-heaps below x (each of size approximately n−1

2
).

SlowHeap(i, j)

If i = j then return pointer to heap consisting of node containing A[i]

Find i ≤ l ≤ j such that x = A[l] is the minimum element in A[i . . . j]

Exchange A[l] and A[j]

Ptrleft = SlowHeap(i, b i+j−1
2

c)

Ptrright = SlowHeap(b i+j−1
2

c + 1, j − 1)

Return pointer to heap consisting of root r containing x with child pointers
Ptrleft and Ptrright

End

a) Define and solve a recurrence equation for the running time of Slowheap.

Recall that given a tree H where the heap condition is satisfied except possibly at the
root r (that is, key[r] ≥ key[leftchild(r)] and/or key[r] ≥ key[rightchild(r)] and key[v] ≥
key[parent(v)] for all nodes v 6= r), we can make H into a heap by performing a Down-

Heapify operation on the root r (Down-Heapify on node v swaps element in v with ele-
ment in one of the children of v and continues down the tree until a leaf is reached or heap
order is reestablished).

Consider the following algorithm FastHeap(1, n) which constructs (a pointer to) H by plac-
ing an arbitrary element x from A (the last one) in the root of H, recursively constructing
the two sub-heaps below x, and finally performing a Down-Heapify operation on x to make
H a heap.

5

FastHeap(i, j)

Ptrleft = FastHeap(i, b i+j−1
2

c)

Ptrright = FastHeap(b i+j−1
2

c + 1, j − 1)

Let Ptr be pointer to tree consisting of root r containing x = A[j] with child
pointers Ptrleft and Ptrright

Perform Down-Heapify on Ptr

Return Ptr

End

b) Define and solve a recurrence equation for the running time of Fastheap.

11. (Duke final spring 2000) In this problem we consider the so-called Interval-Union-

Split-Find problem. In this problem, we want to maintain a set of disjoint intervals covering
all the natural numbers (one interval is considered to be infinite) such that we can support
the operations Union, Split, and Find. Union combines two consecutive intervals, Split

splits an interval in two, and Find returns a unique representative for a given interval.

Example: Consider the following intervals:

1 5 6 9 10 11 12 13

Performing a Split on the last interval at 16 results in the following set of intervals:

1 5 6 9 10 11 12 13 15 16

if we then perform a Union on the intervals [6, 9] and the interval after that ([10, 10])
we obtain the following set of intervals:

1 5 6 10 11 12 13 15 16

and if we then perform a Find on element 14 we get the unique representative for the
interval [13, 15]

It is natural to chose the first element in an interval as the unique representative. (In the
last figure of the above example the intervals would then be represented by the elements
(1, 6, 11, 13, 16) and the Find on element 14 would return 13). The Interval-Union-Split-

Find can now be formalized as maintaining a data structure D under the following operations:

• Init(D): Create an interval-union-split-find structure containing the interval [1,∞].

• Find(D,x): Return the representative (the first element) in the interval containing x.

6

• Union(D,x): Union the interval containing x with the interval after that. No Union is
performed if x is in the last interval.

• Split(D,x): Split the interval [a, . . . , b] containing x into two intervals [a, . . . x− 1] and
[x, . . . , b]. No Split is performed if x is the representative of [a, . . . , b], that is, if x = a.

Describe an implementation of D such that Init runs in O(1) time and such that all other
operations run in O(log n) time, where n is the number of intervals in the structure. (Hint:

What happens to the list of n unique representatives when a Union or Split is performed?)

7

