
CSci 231 Homework 8
∗

Dynamic Programming and Greedy Algorithms

CLRS Chapter 15 and 16

Use a (single) separate sheet of paper for each problem. Be concise.

1. A game-board consists of a row of n fields, each consisting of two numbers. The first
number can be any positive integer, while the second is 1, 2, or 3. An example of a
board with n = 6 could be the following:

17 2 100 87 33 14

1 2 3 1 1 1

The object of the game is to jump from the first to the last field in the row. The top
number of a field is the cost of visiting that field. The bottom number is the maximal
number of fields one is allowed to jump to the right from the field. The cost of a game
is the sum of the costs of the visited fields.

Let the board be represented in a two-dimensional array B[n, 2]. The following re-
cursive procedure (when called with argument 1) computes the cost of the cheapest
game:

Cheap(i)

IF i>n THEN return 0

x=B[i,1]+Cheap(i+1)

y=B[i,1]+Cheap(i+2)

z=B[i,1]+Cheap(i+3)

IF B[i,2]=1 THEN return x

IF B[i,2]=2 THEN return min(x,y)

IF B[i,2]=3 THEN return min(x,y,z)

END Cheap

∗Collaboration is allowed and encouraged, if it is constructive and helps you study better. Remember,

exams will be individual. List the names of the collaborators.

(a) Analyze the asymptotic running time of the procedure.

(b) Describe and analyze a more efficient algorithm for finding the cheapest game.

2. In this problem we consider the 0-1 knapsack problem: Given n items, with item
i being worth v[i] dollars and having weight w[i] pounds, fill a knapsack of capacity m

pounds with the maximal possible value.

Example: Given a knapsack of capacity 50, the maximal value obtainable
with three items of value $60, $100, and $120 and weights 10, 20, and 30,
respectively, is $220.

20

30

= $220

Optimal solution
for knapsack of
size 50

10
20

30

10

20
= $160$60

$100
$120

order

Items in value
per pound

Greedy solution
for knapsack of
size 50

The algorithm Knapsack(i,j) below returns the maximal value obtainable when fill-
ing a knapsack of capacity j using items among items 1 through i (Knapsack(n,m)
solves our problem). The algorithm works by recursively computing the best solution
obtainable with the last item and the best solution obtainable without the last item,
and returning the best of them.

Knapsack(i,j)

IF w[i] <= j THEN

with = v[i] + Knapsack(i-1, j-w[i])

ELSE

with = 0

END IF

without = Knapsack(i-1,j)

RETURN max{with, without}

END Knapsack

2

(a) Show that the running time T of Knapsack(n, m) is exponential in n or m. (Hint:

look at the case where w[i] = 1 for all 1 ≤ i ≤ n and show that T (n, m) =
Ω(2min(m,n))).

(b) Describe an O(n · m) algorithm for computing the value of the optimal solution.

3. Imagine now that the items in the problem above are such that you can take frac-
tions of items. With this modified condition, the problem is called the Fractional

Knapsack problem. Identify a greedy strategy to solve the problem. Prove that
this strategy correctly identifies an optimal solution for all possible inputs.

Analyse the running time of your algorithm and compare it with the 0-1 knapsack

problem running time.

Does it pay off being greedy (in this case)?

4. Suppose you are in charge of planning a party for Bowdoin College. The college has a
hierarchical structure, which forms a tree rooted at President Mills. On the very last
level are the faculty, grouped by department. (I have such a chart in my office, if you
need to be visual; see attached). Each faculty has “underneath” all students taking
a class with him/her that particular semester. Assume that every person is listed at
the highest possible position in the tree and there are no double affiliations (everybody
has one and only one supervisor in this hierarchy and no student is in more than one
class).

You have access to a secret database which ranks each faculty/staff/student with a
conviviality rating (a real number, which can be negative if the person is really difficult
or boring). In order to make the party fun for everybody, President Mills does not
want both a faculty/staff/student and his or her immediate “supervisor” to attend.

You are given a tree that describes the strucure of Bowdoin College. Each node has
a (down) pointer to its left-most child, and a (right) pointer to its next sibling (if
unclear read Section 10.4 in CLR). Each node also holds a name and a conviviality
ranking. Describe an algorithm to make up a guest list that maximizes the sum of the
conviviality rankings of the guests. Analyze the running time of your algorithm.

3

