CSci 231 Homework 11 *

Shortest Paths, CLRS Chapter 24.0, 24.3

Dijkstra’a SSSP algorithm works on general graphs with non-negative weights. The running
time of Dijkstra’s algorithm is O(|E| + |V|x INSERT +|V|x DELETE-MIN +|F|x CHANGE-KEY).
Assuming the graph is connected and the priority queue is implemented as a heap the running time
is O(|E|log |V|). The running time can be improved to O(|E|+|V|log |V]) using improved versions
of priority queue (for instance the Fibonacci heap, which supports INSERT and CHANGE-KEY in
O(1) time amortized, and DELETE-MIN in O(lgn) amortized). While Dijkstra’s algorithms gives
the best known upper bounds for general SSSP with general non-negative weights and linear space,
improved algorithms are known for special classes of graphs. In this homework you will investigate
several examples and derive improved bounds for computing SSSP.

1. Shortest path for Directed Acyclic Graphs (DAGs): Let G = (V, E) be a DAG and
let s be a vertex in G. Find a linear time O(|V| + |E|) algorithm for computing SSSP(s).
What vertices are reachable from s? Sketch a proof that your algorithm is correct. Does your
algorithm need the constraint that the edge weights are non-negative?

2. Consider a directed weighted graph with non-negative weights and V vertices arranged on a
rectangular grid. Each vertex has an edge to its southern, eastern and southeastern neighbours
(if existing). The northwest-most vertex is called the root. The figure below shows an example

graph with V=12 vertices and the root drawn in black:
2

0 6
1
>
11 4 17
13
_ 13

Assume that the graph is represented such that each vertex can access all its neighbours in
constant time.

(a) How long would it take Dijkstra’s algorithm to find the length of the shortest path from
the root to all other vertices?

(b) Describe an algorithm that finds the length of the shortest paths from the root to all
other vertices in O(V') time.

*This is the last homework. Collabortaion is encouraged as usually.

(¢) Describe an efficient algorithm for solving the all-pair-shortest-paths problem on the

graph (it is enough to find the length of each shortest path).

3. Consider a directed weighted graph with non-negative weights which is formed by adding
an edge from every leaf in a binary tree to the root of the tree. Let the graph/tree have n
vertices. An example of such a graph with n = 7 could be the following;:

()
m 9
45
82 2 6
13
7 9

4007

We want to design an algorithm for finding the shortest path between two vertices in such a
graph.

(a) How long time would it take Dijkstra’s algorithm to solve the problem?

(b) Describe and analyze a more efficient algorithm for the problem.

4. All-Pair-Shortest-Paths with dynamic programming: In the APSP problem, we want
to compute the shortest path between any two vertices u,v € V. Note that the output is of
size O(|V|?) so we cannot hope to design a better than O(|V|?) time algorithm.

(a) We can solve the problem simply by running Dijkstra’s algorithm |V| times. What is the

—
o

running time of this approach? What does the running time become for sparse graphs
(E = 0(V)) and for dense graphs (E = §(V?))?

We can obtain another algorithm by working on adjacency matrix A. For weighted
graphs, a;; is equal to the weight w;; of the edge (v;,v;); wy; is assumed to be oo is the
edge does not exist.

Let A, B be two matrices, and let C'= A - B. Remember that

n
Cij = Z ik * bij
k=1

We redefine the > and - operators in matrix multiplication to mean minimum and -+
respectively. That is,
Cij = minkzl..n{aik + bkj}

What does A - A represent in terms of paths in graph G? What about min{A4, A - A}?

) Sketch an algorithm for computing APSP using this approach and estimate its running

time.

