CSci 231 Homework 11 *

Shortest Paths, CLRS Chapter 24.0, 24.3

Dijkstra's algorithm works on general graphs with non-negative weights. The running time of Dijkstra's algorithm is $O(|E| + |V| \times INSERT + |V| \times DELETE-MIN + |E| \times CHANGE-KEY)$. Assuming the graph is connected and the priority queue is implemented as a heap the running time is $O(|E|\log|V|)$. The running time can be improved to $O(|E| + |V|\log|V|)$ using improved versions of priority queue (for instance the Fibonacci heap, which supports INSERT and CHANGE-KEY in O(1) time amortized, and DELETE-MIN in $O(\lg n)$ amortized). While Dijkstra's algorithms gives the best known upper bounds for general SSSP with general non-negative weights and linear space, improved algorithms are known for special classes of graphs. In this homework you will investigate several examples and derive improved bounds for computing SSSP.

- 1. Shortest path for Directed Acyclic Graphs (DAGs): Let G = (V, E) be a DAG and let s be a vertex in G. Find a linear time O(|V| + |E|) algorithm for computing SSSP(s). What vertices are reachable from s? Sketch a proof that your algorithm is correct. Does your algorithm need the constraint that the edge weights are non-negative?
- 2. Consider a directed weighted graph with non-negative weights and V vertices arranged on a rectangular grid. Each vertex has an edge to its southern, eastern and southeastern neighbours (if existing). The northwest-most vertex is called the root. The figure below shows an example graph with V=12 vertices and the root drawn in black:

Assume that the graph is represented such that each vertex can access all its neighbours in constant time.

- (a) How long would it take Dijkstra's algorithm to find the length of the shortest path from the root to all other vertices?
- (b) Describe an algorithm that finds the length of the shortest paths from the root to all other vertices in O(V) time.

^{*}This is the last homework. Collabortaion is encouraged as usually.

- (c) Describe an efficient algorithm for solving the all-pair-shortest-paths problem on the graph (it is enough to find the length of each shortest path).
- 3. Consider a directed weighted graph with non-negative weights which is formed by adding an edge from every leaf in a binary tree to the root of the tree. Let the graph/tree have n vertices. An example of such a graph with n=7 could be the following:

We want to design an algorithm for finding the shortest path between two vertices in such a graph.

- (a) How long time would it take Dijkstra's algorithm to solve the problem?
- (b) Describe and analyze a more efficient algorithm for the problem.
- 4. All-Pair-Shortest-Paths with dynamic programming: In the APSP problem, we want to compute the shortest path between any two vertices $u, v \in V$. Note that the output is of size $O(|V|^2)$ so we cannot hope to design a better than $O(|V|^2)$ time algorithm.
 - (a) We can solve the problem simply by running Dijkstra's algorithm |V| times. What is the running time of this approach? What does the running time become for sparse graphs $(E = \theta(V))$ and for dense graphs $(E = \theta(V^2))$?

We can obtain another algorithm by working on adjacency matrix A. For weighted graphs, a_{ij} is equal to the weight w_{ij} of the edge (v_i, v_j) ; w_{ij} is assumed to be ∞ is the edge does not exist.

Let A, B be two matrices, and let $C = A \cdot B$. Remember that

$$c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj}$$

We redefine the \sum and \cdot operators in matrix multiplication to mean minimum and + respectively. That is,

$$c_{ij} = min_{k=1..n} \{a_{ik} + b_{kj}\}$$

- (b) What does $A \cdot A$ represent in terms of paths in graph G? What about min $\{A, A \cdot A\}$?
- (c) Sketch an algorithm for computing APSP using this approach and estimate its running time.