
Growth of Functions, Continued
CLRS 3

Last time we looked at the problem of comparing functions (running times).

3n2 lg n + 2n + 1 vs. 1000n lg10 n + n lg n + 5

Basically, we want to quantify how fast a function grows when n −→ ∞.
⇓
asymptotic analysis of algorithms

More precisely, we want to compare 2 functions (running times) and tell which one is larger
(grows faster) than the other. We defined O,Ω,Θ:

n0

cg(n)

f(n)

• f is below g ⇔ f ∈ O(g) ⇔ f ≤ g

• f is above g ⇔ f ∈ Ω(g) ⇔ f ≥ g

• f is both above and below g ⇔ f ∈ Θ(g) ⇔ f = g

Example: Show that 2n2 + 3n + 7 ∈ O(n2)

Upper and lower bounds are symmetrical: If f is upper-bounded by g then g is lower-bounded
by f and we have:

f ∈ O(g) ⇔ g ∈ Ω(f)

(Proof: f ≤ c · g ⇔ g ≥ 1
c
· f). Example: n ∈ O(n2) and n2 ∈ Ω(n)

An O() upper bound is not a tight bound. Example:
2n2 + 3n + 5 ∈ O(n100)
2n2 + 3n + 5 ∈ O(n50)
2n2 + 3n + 5 ∈ O(n3)
2n2 + 3n + 5 ∈ O(n2)

1



Similarly, an Ω() lower bound is not a tight bound. Example:
2n2 + 3n + 5 ∈ Ω(n2)
2n2 + 3n + 5 ∈ Ω(n log n)
2n2 + 3n + 5 ∈ Ω(n)
2n2 + 3n + 5 ∈ Ω(lg n)

An asymptotically tight bound for f is a function g that is equal to f up to a constant factor:
c1g ≤ f ≤ c2g,∀n ≥ n0. That is, f ∈ O(g) and f ∈ Ω(g).

Some properties:

• f = O(g) ⇔ g = Ω(f)

• f = Θ(g) ⇔ g = Θ(f)

• reflexivity: f = O(f), f = Ω(f), f = Θ(f)

• transitivity: f = O(g), g = O(h) −→ f = O(h)

The growth of two functions f and g can be found by computing the limit limn−→∞

f(n)
g(n) . Using

the definition of O,Ω,Θ it can be shown that :

• if limn−→∞

f(n)
g(n) = 0: then intuitively f < g =⇒ f = O(g) and f 6= Θ(g).

• if limn−→∞

f(n)
g(n) = ∞: then intuitively f > g =⇒ f = Ω(g) and f 6= Θ(g).

• if limn−→∞

f(n)
g(n) = c, c > 0: then intuitively f = c · g =⇒ f = Θ(g).

This property will be very useful when doing exercises.

Comments

• The correct way to say is that f(n) ∈ O(g(n)). Abusing notation, people normally write
f(n) = O(g(n)).

3n2 + 2n + 10 = O(n2), n = O(n2), n2 = Ω(n), n log n = Ω(n), 2n2 + 3n = Θ(n2)

• When we say “the running time is O(n2)” we mean that the worst-case running time is O(n2)
— best case might be better.

• When we say “the running time is Ω(n2)”, we mean that the best case running time is Ω(n2)
— the worst case might be worse.

• Insertion-sort:

– Best case: Ω(n)

– Worst case: O(n2)

– We can also say that worst case is Θ(n2) because there exists an input for which insertion
sort takes Ω(n2). Same for best case.

2



– Therefore the running time is Ω(n) and O(n2).

– But, we cannot say that the running time of insertion sort is Θ(n2)!!!

• Use of O-notation makes it much easier to analyze algorithms; we can easily prove the O(n2)
insertion-sort time bound by saying that both loops run in O(n) time.

• We often use O(n) in equations and recurrences: e.g. 2n2 + 3n + 1 = 2n2 + O(n) (meaning
that 2n2 + 3n + 1 = 2n2 + f(n) where f(n) is some function in O(n)).

• We use O(1) to denote constant time.

• One can also define o and ω (little-oh and little-omega):

– f(n) = o(g(n)) corresponds to f(n) < g(n)

– f(n) = ω(g(n)) corresponds to f(n) > g(n)

– we will not use them; we’ll aim for tight bounds Θ.

• Not all functions are asymptotically comparable! There exist functions f, g such that f is not
O(g), f is not Ω(g) (and f is not Θ(g)).

Growth of Standard Functions

• Polynomial of degree d:
a0 + a1n + . . . adn

d = Θ(nd)

where a1, a2, . . . , ad are constants (and ad > 0).

• Any polylog grows slower than any polynomial:

loga n = O(nb),∀a > 0

Exercise: prove it!

• Any polynomial grows slower than any exponential with base c > 1:

nb = O(cn),∀b > 0, c > 1

Exercise: prove it!

3



Review of Log and Exp

• Base 2 logarithm comes up all the time (from now on we will always mean log2 n when we
write log n or lg n).

• Note: log n <<
√

n << n

• Log Properties:

– lgk n = (lg n)k

– lg lg n = lg(lg n)

– alogb c = clogb a

– aloga b = b

– loga n = logb n

logb a

– lg bn = n lg b

– lg xy = lg x + lg y

– loga b = 1
logb a

• Exp properties:

– a0 = 1

– a−1 = 1/a

– (am)n = amn

– am · an = am+n

4


