Growth of Functions, Continued
CLRS 3

Last time we looked at the problem of comparing functions (running times).

3n?lgn +2n+1 vs. 1000n1g®n+nlgn +5

Basically, we want to quantify how fast a function grows when n — oo.

4

asymptotic analysis of algorithms

More precisely, we want to compare 2 functions (running times) and tell which one is larger
(grows faster) than the other. We defined O, 2, ©:

cg(n)
_--f(n)

e fishelowg < f€O0(g) < f<g
o fisaboveg & feQg) & f>g

e f is both above and below g & f€0O(g) & f=g

Example: Show that 2n? 4+ 3n + 7 € O(n?)

Upper and lower bounds are symmetrical: If f is upper-bounded by g then g is lower-bounded
by f and we have:

fe0(9) & gecf)
(Proof: f<c-g< g>1.f). Example: n € O(n?) and n® € Q(n)

An O() upper bound is not a tight bound. Example:
2n2 4+ 3n +5 € O(n'")
2n% +3n+5 € O(n™)
2n2 +3n +5 € O(n?)
2n% +3n +5 € O(n?)



Similarly, an () lower bound is not a tight bound. Example:
2n% +3n + 5 € Q(n?)
2n2 4+ 3n+5 € Q(nlogn)
2n% +3n+5 € Q(n)
2n2 +3n+5€ Q(lgn)

An asymptotically tight bound for f is a function g that is equal to f up to a constant factor:
c19 < f < c2g9,Yn > ng. That is, f € O(g) and f € Q(g).

Some properties:
o [=0(9) & g9=9(f)
e [=06(9) = g=06(f)
e reflexivity: f = O(f), f = Q(f), f = O(f)
e transitivity: f = 0O(g),9 = O(h) — f =0O(h)
The growth of two functions f and g can be found by computing the limit limn_,oo%. Using
the definition of O, 2, © it can be shown that :
f(n)

o if limn*)oov 0: then intuitively f < g = f = O(g) and f # ©(g).
(

‘x N
SIS
I I

n

o if lim, oo: then intuitively f > g = f = Q(g) and f # O(g).

-~ @
= =
= =
Il

Z

n
n

o if limn*)oog ¢, ¢ > 0: then intuitively f =c¢-g = f = 0(g).

—~

This property will be very useful when doing exercises.

Comments

e The correct way to say is that f(n) € O(g(n)). Abusing notation, people normally write
f(n) = O(g(n)).

3n? 4+ 2n +10 = O(n?),n = O(n?),n* = Q(n),nlogn = Q(n),2n? + 3n = O(n?)

e When we say “the running time is O(n?)” we mean that the worst-case running time is O(n?)
— best case might be better.

e When we say “the running time is Q(n?)”, we mean that the best case running time is Q(n?)
— the worst case might be worse.

e Insertion-sort:

— Best case: Q(n)
— Worst case: O(n?)

— We can also say that worst case is ©(n?) because there exists an input for which insertion
sort takes Q(n?). Same for best case.



— Therefore the running time is 2(n) and O(n?).

— But, we cannot say that the running time of insertion sort is ©(n?)!!!

e Use of O-notation makes it much easier to analyze algorithms; we can easily prove the O(n?)
insertion-sort time bound by saying that both loops run in O(n) time.

e We often use O(n) in equations and recurrences: e.g. 2n? + 3n + 1 = 2n% + O(n) (meaning
that 2n? 4+ 3n + 1 = 2n? + f(n) where f(n) is some function in O(n)).

e We use O(1) to denote constant time.

e One can also define o0 and w (little-oh and little-omega):

— f(n) = o(g(n)) corresponds to f(n) < g(n)
— f(n) = w(g(n)) corresponds to f(n) > g(n)
— we will not use them; we’ll aim for tight bounds ©.

e Not all functions are asymptotically comparable! There exist functions f, g such that f is not
O(g), f is not Q(g) (and f is not ©(g)).

Growth of Standard Functions

e Polynomial of degree d:
d

ap + an+ ... am? = 0(n?)
where a1, as,...,aq are constants (and ag > 0).

e Any polylog grows slower than any polynomial:

log®n = O(n?),Ya > 0

Exercise: prove it!

e Any polynomial grows slower than any exponential with base ¢ > 1:

n® =0(c"),¥b > 0,¢> 1

Exercise: prove it!



Review of Log and Exp

e Base 2 logarithm comes up all the time (from now on we will always mean log, n when we
write logn or lgn).

e Note: logn << /n << n
e Log Properties:

—1g"n = (Ign)*

— lglgn = lg(lgn)

— glogyc — logya

— glogad —

— log,n = ﬁi—zz

— lgb” =nlgbd
—lgry=lgz+1gy
— log, b= @

e Exp properties:

—a'=1
—at=1/a

_ am)n:amn
_ am'an:aern



