
CSci 231 Homework 7
∗

Red Black Trees

CLRS Chapter 13 and 14

Choose 4 problems from the list below.

1. (CLRS 13.1-6) What is the largest possible number of internal nodes in a red-black
tree with black-height k? What is the smallest possible number?

2. (CLRS 13-2) The join operation takes two dynamic sets S1 and S2 and an element x

such that for any x1 ∈ S1 and x2 ∈ S2, we have key[x1] ≤ key[x] ≤ key[x2]. It returns
a set S = S1 ∪ {x} ∪ S2. In this problem, we investigate how to implement the join
operation on red-black trees.

(a) Given a red-black tree T , we store its black-height as the field bh[T]. Argue that
this field can be maintained by RB-Insert and RB-Delete without requiring
extra storage in the tree and without increasing the asymptotic running times.
Show while descending through T , we can determine the black-height of each node
we visit in O(1) time per node visited.

We wish to implement the operation RB-Join(T1, x, T2) which destroys T1 and
T2 and returns a red-black tree T = T1 ∪ {x} ∪ T2. Let n be the total number of
nodes in T1 and T2.

(b) Assume without loss of generality that bh[T1] ≥ bh[T2]. Describe an O(lg n) time
algorithm that finds a black node y in T1 with the largest key from among those
nodes whose black-height is bh[T2].

(c) Let Ty be the subtree rooted at y. Describe how Ty can be replaced by Ty∪{x}∪T2

in O(1) time without destroying the binary-search-tree property.

(d) What color should we make x so that red-black properties 1, 2, and 4 are main-
tained? Describe how property 3 can be enforced in O(lg n) time.

(e) Argue that the running time of RB-Join is O(lg n)

∗Collaboration is allowed and encouraged, if it is constructive and helps you study better. Remember,

exams will be individual. Write up the solutions on your own.

3. In this problem we consider a data structure for maintaining a multi-set M . We want
to support the following operations:

• Init(M): create an empty data structure M .

• Insert(M, i): insert (one copy of) i in M .

• Remove(M, i): remove (one copy of) i from M .

• Frequency(M, i): return the number of copies of i in M .

• Select(M, k): return the k’th element in the sorted order of elements in M .

If for example M consists of the elements
< 0, 3, 3, 4, 4, 7, 8, 8, 8, 9, 11, 11, 11, 11, 13 >

then Frequency(M, 4) will return 2 and Select(M, 6) will return 7.

Let |M | and ‖M‖ denote the number of elements and the number of different elements
in M , respectively.

a) Describe an implementation of the data structure such that Init(M) takes O(1)
time and all other operations take O(log ‖M‖) time.

b) Design an algorithm for sorting a list L in O(|L| log ‖L‖) time using this data
structure.

4. (Duke final spring 2001) We want to maintain a data structure D representing an
infinite array of integers under the following operations:

• Init(D): Create a data structure for an infinite array with all entries being zero.

• Lookup(D, x): Return the value of integer with index x.

• Update(D, x, k): Change the value of integer with index x to k.

• Max(D): Return the maximal index for which the corresponding integer is non-
zero.

• Sum(D): Return the sum of all integers in the array.

Describe an implementation of D such that Init, Max, and Sum runs in O(1) time
and Lookup and Update in O(logn) time, where n is the number of non-zero integers
in the list.

5. (Duke final spring 2002) The mean M of a set of k integers {x1, x2, . . . xk} is defined
as

M =
1

k

k∑

i=1

xi.

We want to maintain a data structure D on a set of integers under the normal Init,
Insert, Delete, and Find operations, as well as a Mean operation, defined as
follows:

2

• Init(D): Create an empty structure D.

• Insert(D,x): Insert x in D.

• Delete(D,x): Delete x from D.

• Find(D,x): Return pointer to x in D.

• Mean(D,a, b): Return the mean of the set consisting of elements x in D with
a ≤ x ≤ b.

(a) What does Mean(D,7, 17) return if D contains integers

(2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 27)?

(b) Describe how to modify a standard red-black tree in order to implement D such
that Init is supported in O(1) time and Insert, Delete, Find, and Mean are
supported in O(log n) time.

6. (Duke midterm spring 2001) In this problem we consider a data structure D for
maintaining bar-diagrams, where we have a bar of height h ≥ 0 associated with every
non-negative integer.

The following is an example of a bar-diagram:

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 181

We want to support the following operations:

• Init(D): Create a bar-diagram where all bars have height 0.

• Change(D,b,k): Add k to bar b (k can be negative but a bar cannot have negative
height).

• Height(D,b): Return the height of bar b.

• TotalSum(D): Return the sum of the height of all bars.

(a) Describe an implementation of D such that Init and TotalSum run in O(1)
time and Change and Height run in O(log n) time. Here n is the number of
non-zero bars in the diagram.

(b) Consider the problem of extending the data structure with operations PrefixSum

and IntervalSum as follows:

3

• PrefixSum(D,b2): Return the sum of the height of all bars b2 with b ≤ b2.

• IntervalSum(D,b1,b2): Return the sum of the height of all bars b such that
b1 < b ≤ b2.

Note that IntervalSum can easily be implemented using two calls to Prefix-

Sum. Describe an implementation of D such that Init and TotalSum run in
O(1) time and all other operations—including PrefixSum and IntervalSum—
run in O(log n) time.

7. Consider a binary search tree in which each node v contains a key as well as an
additional value called addend. The addend of node v is implicitly added to all keys
in the subtree rooted at v (including v). Let (key, addend) denote the contents of any
node v.

For example, the following tree contains the elements {5, 6, 7}:

(3,0) (4,1)

(4,2)

(a) Which elements does the following tree contain?

(-1,0) (2,0)

(6,4)

(0,2)

(0,1)

(15, -3)

(4,6) (10,7)

(7,0)

(b) Let h be the height of a tree as defined above. Describe how to perform the
following operations in O(h) time:

• FIND(x, T): return YES if element x is stored in tree T

• INSERT(x, T): inserts element x in tree T

• PUSH(x, k, T): add k to all elements ≥ x

(c) Describe how it can be insured that h = O(log n) during the above operations.
(Hint: show how to perform rotation)

8. Consider two balanced search trees T1 and T2 representing two sets of integers S1 and S2

with n1 and n2 elements, respectively. Consider the problem of determining if S1 ⊆ S2

using T1 and T2.

4

(a) Describe an O(n1 log n2) time algorithm for determining if S1 ⊆ S2 using O(1)
extra space.

(b) Describe an O(n1+n2) time algorithm for determining if S1 ⊆ S2 using O(n1+n2)
extra space.

(c) Describe an O(n1+n2) time algorithm for determining if S1 ⊆ S2 using O(log n1+
log n2) extra space.

9. In this problem we consider data structures for maintaining a matrix M. We want to
support the following operations:

• Init(M): create an empty matrix (zeros on all positions)

• Lookup(M, i, j): return the value at index (i, j) (i, j ≥ 0)

• Update(M, i, j, e): change the value at index (i, j) to e (i, j ≥ 0)

• Transpose(M): transpose the matrix (that is, element at index (i, j) becomes
element at index (j, i))

• Add(M): return the sum of the elements in M

Assume first that we are working on a n × n matrix.

(a) Describe a data structure such that Init runs in O(n2) time, and all other op-
erations run in O(1) time. (Hint: Does anything really need to be done when
performing a transpose?)

Assume now that the matrix is of arbitrary size.

(b) Describe a data structure such that Init runs in O(1) time, Lookup and Update

in O(lg k) time, and Transpose and Add in O(1) time, where k is the number of
non-zero entries in the matrix. (Hint: Maintain all non-zero elements in a row in
a red-black tree)

10. (Duke final spring 2000) In this problem we consider divide-and-conquer algorithms
for building a heap H on n elements given in an array A. Recall that a heap is an
(almost) perfectly balanced binary tree where key(v) ≥ key(parent(v)) for all nodes v.
We assume n = 2h − 1 for some constant h, such that H is perfectly balanced (leaf
level is “full”).

First consider the following algorithm SlowHeap(1, n) which constructs (a pointer
to) H by finding the minimal element x in A, making x the root in H , and recursively
constructing the two sub-heaps below x (each of size approximately n−1

2
).

SlowHeap(i, j)

If i = j then return pointer to heap consisting of node containing A[i]

Find i ≤ l ≤ j such that x = A[l] is the minimum element in A[i . . . j]

5

Exchange A[l] and A[j]

Ptrleft = SlowHeap(i, b i+j−1

2
c)

Ptrright = SlowHeap(b i+j−1

2
c + 1, j − 1)

Return pointer to heap consisting of root r containing x with child point-
ers Ptrleft and Ptrright

End

a) Define and solve a recurrence equation for the running time of Slowheap.

Recall that given a tree H where the heap condition is satisfied except possibly at
the root r (that is, key[r] ≥ key[leftchild(r)] and/or key[r] ≥ key[rightchild(r)] and
key[v] ≥ key[parent(v)] for all nodes v 6= r), we can make H into a heap by performing
a Down-Heapify operation on the root r (Down-Heapify on node v swaps element
in v with element in one of the children of v and continues down the tree until a leaf
is reached or heap order is reestablished).

Consider the following algorithm FastHeap(1, n) which constructs (a pointer to) H

by placing an arbitrary element x from A (the last one) in the root of H , recursively
constructing the two sub-heaps below x, and finally performing a Down-Heapify

operation on x to make H a heap.

6

FastHeap(i, j)

Ptrleft = FastHeap(i, b i+j−1

2
c)

Ptrright = FastHeap(b i+j−1

2
c + 1, j − 1)

Let Ptr be pointer to tree consisting of root r containing x = A[j] with
child pointers Ptrleft and Ptrright

Perform Down-Heapify on Ptr

Return Ptr

End

b) Define and solve a recurrence equation for the running time of Fastheap.

11. (Duke final spring 2000) In this problem we consider the so-called Interval-

Union-Split-Find problem. In this problem, we want to maintain a set of disjoint
intervals covering all the natural numbers (one interval is considered to be infinite)
such that we can support the operations Union, Split, and Find. Union combines
two consecutive intervals, Split splits an interval in two, and Find returns a unique
representative for a given interval.

Example: Consider the following intervals:

1 5 6 9 10 11 12 13

Performing a Split on the last interval at 16 results in the following set of
intervals:

1 5 6 9 10 11 12 13 15 16

if we then perform a Union on the intervals [6, 9] and the interval after that
([10, 10]) we obtain the following set of intervals:

1 5 6 10 11 12 13 15 16

and if we then perform a Find on element 14 we get the unique representative
for the interval [13, 15]

It is natural to chose the first element in an interval as the unique representative. (In
the last figure of the above example the intervals would then be represented by the

7

elements (1, 6, 11, 13, 16) and the Find on element 14 would return 13). The Interval-

Union-Split-Find can now be formalized as maintaining a data structure D under
the following operations:

• Init(D): Create an interval-union-split-find structure containing the interval
[1,∞].

• Find(D,x): Return the representative (the first element) in the interval containing
x.

• Union(D,x): Union the interval containing x with the interval after that. No
Union is performed if x is in the last interval.

• Split(D,x): Split the interval [a, . . . , b] containing x into two intervals [a, . . . x−1]
and [x, . . . , b]. No Split is performed if x is the representative of [a, . . . , b], that
is, if x = a.

Describe an implementation of D such that Init runs in O(1) time and such that
all other operations run in O(log n) time, where n is the number of intervals in the
structure. (Hint: What happens to the list of n unique representatives when a Union

or Split is performed?)

8

