
Introduction to Algorithms March 18, 2004
Massachusetts Institute of Technology 6.046J/18.410J
Professors Erik Demaine and Shafi Goldwasser Handout 14

Lecture Notes on Skip Lists
Lecture 12 — March 18, 2004

Erik Demaine

� Balanced tree structures we know at this point: B-trees, red-black trees, treaps.

� Could you implement them right now? Probably, with time... but without looking up any
details in a book?

� Skip lists are a simple randomized structure you’ll never forget.

Starting from scratch
� Initial goal: just searches — ignore updates (Insert/Delete) for now

� Simplest data structure: linked list

� Sorted linked list:
�������

time

� 2 sorted linked lists:

– Each element can appear in 1 or both lists

– How to speed up search?

– Idea: Express and local subway lines

– Example: 14 , 23, 34 , 42 , 50, 59, 66, 72 , 79, 86, 96 , 103, 110, 116, 125
(What is this sequence?)

– Boxed values are “express” stops; others are normal stops

– Can quickly jump from express stop to next express stop, or from any stop to next
normal stop

– Represented as two linked lists, one for express stops and one for all stops:

14

14

23 34 42 72 96

34 42 72 96

50 59 66 79 86 103 110 116 125

– Every element is in linked list 2 (LL2); some elements also in linked list 1 (LL1)

– Link equal elements between the two levels

– To search, first search in LL1 until about to go too far, then go down and search in LL2

2 Handout 14: Lecture Notes on Skip Lists

– Cost: � ��� ������� �
	
� ��� �����
� �� ��� ������� ���

� ��� ������� �
	 �� ��� ������� �
– Minimized when � ��� ������� � � �� ��� ������� �� � ��� ������� ��� � �� � ��� ������� � ��� �� � ��������� ��! �#" � � � �
– Resulting 2-level structure:

sqrt n sqrt n sqrt n sqrt n

sqrt n

� 3 linked lists: $�%'&� �
�)(linked lists: (%+*� �
�
�-,
�

linked lists:

�.,
� %0/ 132� � �

�.,
� % ��4�57698;:< =?> @A � � ���

�-,
� �

– Becomes like a binary tree:

23 42 7250 59 66 79 86 103 110 116 12514 96

14

14

14

50

50

79

79

79

96 110

110

125

34

34 66

– Example: Search for 72B Level 1: 14 too small, 79 too big; go down 14B Level 2: 14 too small, 50 too small, 79 too big; go down 50B Level 3: 50 too small, 66 too small, 79 too big; go down 66B Level 4: 66 too small, 72 spot on

Handout 14: Lecture Notes on Skip Lists 3

Insert
� New element should certainly be added to bottommost level

(Invariant: Bottommost list contains all elements)

� Which other lists should it be added to?
(Is this the entire balance issue all over again?)

� Idea: Flip a coin

– With what probability should it go to the next level?

– To mimic a balanced binary tree, we’d like half of the elements to advance to the next-
to-bottommost level

– So, when you insert an element, flip a fair coin

– If heads: add element to next level up, and flip another coin (repeat)

� Thus, on average:

–
��� �

the elements go up 1 level

–
�����

the elements go up 2 levels

–
�����

the elements go up 3 levels

– Etc.

� Thus, “approximately even”

Example
� Get out a real coin and try an example

� You should put a special value ��� at the beginning of each list, and always promote this
special value to the highest level of promotion

� This forces the leftmost element to be present in every list, which is necessary for searching

. . . many coins are flipped . . .
(Isn’t this easy?)

� The result is a skip list.

� It probably isn’t as balanced as the ideal configurations drawn above.

� It’s clearly good on average.

� Claim it’s really really good, almost always.

4 Handout 14: Lecture Notes on Skip Lists

Analysis: Claim of With High Probability
� Theorem: With high probability, every search costs

���
�-,
� �

in a skip list with
�

elements

� What do we need to do to prove this? [Calculate the probability, and show that it’s high!]

� We need to define the notion of “with high probability”; this is a powerful technical notion,
used throughout randomized algorithms

� Informal definition: An event occurs with high probability if, for any � � �
, there is an

appropriate choice of constants for which � occurs with probability at least
�
��� � � � ��� �

� In reality, the constant hidden within
���
�-,
���

in the theorem statement actually depends on � .
� Precise definition: A (parameterized) event � � occurs with high probability if, for any
� � �

, � � occurs with probability at least
�
��� � � � � , where � � is a “constant” depending

only on � .

� The term � � ��� �	� � or more precisely � � � �	� is called the error probability

� The idea is that the error probability can be made very very very small by setting � to
something big, e.g., 100

Analysis: Warmup
� Lemma: With high probability, skip list with

�
elements has � �

�-,
���

levels

� (In fact, the number of levels is
���
� ! , � � , but we only need an upper bound.)

� Proof:

– Pr[element
 is in more than �
�-,
�

levels] � ��� ��� 698�: � ��� �
�
– Recall Boole’s inequality / union bound:

� ��� � 4�� � ��� % % % � � :���� � ��� � 4�� 	 � ��� � ��� 	 % % % 	 � ��� � :��
– Applying this inequality:

Pr[any element is in more than �
�-,
�

levels] � � % ��� ��� � ��� �	��� 4
– Thus, error probability is polynomially small and exponent (� � � � �) can be made

arbitrarily large by appropriate choice of constant in level bound of � �
�-,
���

Handout 14: Lecture Notes on Skip Lists 5

Analysis: Proof of Theorem
� Cool idea: Analyze search backwards—from leaf to root

– Search starts at leaf (element in bottommost level)

– At each node visited:B If node wasn’t promoted higher (got TAILS here), then we go [came from] leftB If node wasn’t promoted higher (got HEADS here), then we go [came from] top

– Search stops at root of tree

� Know height is � �
�.,
���

with high probability; say it’s �
�.,
�

� Thus, the number of “up” moves is at most �
�.,
�

with high probability

� Thus, search cost is at most the following quantity:

How many times do we need to flip a coin to get �
�.,
�

heads?

� Intuitively,
���
�-,
� �

Analysis: Coin Flipping
� Claim: Number of flips till �

�-,
�

heads is
���
�-,
� �

with high probability

� Again, constant in
���
�-,
� �

bound will depend on �
� Proof of claim:

– Say we make
��� � �., � flips

– When are there at least �
�-,
�

heads?

– Pr[exactly �
�.,
�

heads] � � ��� � �., �
�
�.,
���< =?> @���
	��
�
�������������� ��� �����������

%�� ���� � 698 :< =�> @������ �! %�� ����#" � 698;:< =�> @$ ��% 6 !
– Pr[at most �

�.,
�

heads] � � ��� � �., �
�
�-,
� �< =?> @� � �
�
���'&)(*,+-&)���./���
	��
�
�

%�� �� �#" � 698 :< =?> @$ ��% 6 !
– Recall bounds on 021354 : �76
 � 3 �

� 6
 � � �98:6
 � 3
[Michael’s “deathbed” formula: even on your deathbed, if someone gives you a bino-
mial and says “simplify”, you should know this!]

6 Handout 14: Lecture Notes on Skip Lists

– Applying this formula to the previous equation:

Pr[at most �
�-,
�

heads] �
� ��� � �., �
�
�-,
� � � �� � " � 698 :

�
� 8 % ��� � �., �

�
�.,
� � � 698 : %7� �� �#" � 698;:

� � ��� 8 � � 698;: % � �� � " � 698;:
� � 698 � 4������	� � 698 : % � ���� " � 698 :
� � � 698 � 4����
� � " � � 698�:� � � � 698�:
� ��� � �

– The point here is that, as
�����

� , � ��
 �
�.,
����� 8 ��� � , independent of (for all) �

� End of proof of claim and theorem

Acknowledgments

The mysterious “Michael” is Michael Bender at SUNY Stony Brook. This lecture is based on
discussions with him.

