Recurrences

(CLRS 4.1-4.2)

- Last time we discussed divide-and-conquer algorithms

Divide and Conquer

To Solve P:

1. Divide P into smaller problems $P_{1}, P_{2}, P_{3} \ldots . . P_{k}$.
2. Conquer by solving the (smaller) subproblems recursively.
3. Combine solutions to $P_{1}, P_{2}, \ldots P_{k}$ into solution for P.

- Analysis of divide-and-conquer algorithms and in general of recursive algorithms leads to recurrences.
- Merge-sort lead to the recurrence $T(n)=2 T(n / 2)+n$
- or rather, $T(n)= \begin{cases}\Theta(1) & \text { If } n=1 \\ T\left(\left\lceil\frac{n}{2}\right\rceil\right)+T\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+\Theta(n) & \text { If } n>1\end{cases}$
- but we will often cheat and just solve the simple formula (equivalent to assuming that $n=2^{k}$ for some constant k, and leaving out base case and constant in Θ).

Methods for solving recurrences

1. Substitution method
2. Iteration method

- Recursion-tree method
- (Master method)

1 Solving Recurrences with the Substitution Method

- Idea: Make a guess for the form of the solution and prove by induction.
- Can be used to prove both upper bounds $O()$ and lower bounds $\Omega()$.
- Let's solve $T(n)=2 T(n / 2)+n$ using substitution
- Guess $T(n) \leq c n \log n$ for some constant c (that is, $T(n)=O(n \log n))$
- Proof:
* Base case: we need to show that our guess holds for some base case (not necessarily $n=1$, some small n is ok). Ok, since function constant for small constant n.
* Assume holds for $n / 2: T(n / 2) \leq c \frac{n}{2} \log \frac{n}{2}$ (Question: Why not $n-1$?) Prove that holds for $n: T(n) \leq c n \log n$

$$
\begin{aligned}
T(n) & =2 T(n / 2)+n \\
& \leq 2\left(c \frac{n}{2} \log \frac{n}{2}\right)+n \\
& =c n \log \frac{n}{2}+n \\
& =c n \log n-c n \log 2+n \\
& =c n \log n-c n+n
\end{aligned}
$$

So ok if $c \geq 1$

- Similarly it can be shown that $T(n)=\Omega(n \log n)$

Exercise!

- Similarly it can be shown that $T(n)=T\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+T\left(\left\lceil\frac{n}{2}\right\rceil\right)+n$ is $\Theta(n \lg n)$.

Exercise!

- The hard part of the substitution method is often to make a good guess. How do we make a good (i.e. tight) guess??? Unfortunately, there's no "recipe" for this one. Try iteratively $O\left(n^{3}\right), \Omega\left(n^{3}\right), O\left(n^{2}\right), \Omega\left(n^{2}\right)$ and so on. Try solving by iteration to get a feeling of the growth.

2 Solving Recurrences with the Iteration/Recursion-tree Method

- In the iteration method we iteratively "unfold" the recurrence until we "see the pattern".
- The iteration method does not require making a good guess like the substitution method (but it is often more involved than using induction).
- Example: Solve $T(n)=8 T(n / 2)+n^{2} \quad(T(1)=1)$

$$
\begin{aligned}
T(n) & =n^{2}+8 T(n / 2) \\
& =n^{2}+8\left(8 T\left(\frac{n}{2^{2}}\right)+\left(\frac{n}{2}\right)^{2}\right) \\
& \left.=n^{2}+8^{2} T\left(\frac{n}{2^{2}}\right)+8\left(\frac{n^{2}}{4}\right)\right) \\
& =n^{2}+2 n^{2}+8^{2} T\left(\frac{n}{2^{2}}\right) \\
& =n^{2}+2 n^{2}+8^{2}\left(8 T\left(\frac{n}{2^{3}}\right)+\left(\frac{n}{2^{2}}\right)^{2}\right) \\
& \left.=n^{2}+2 n^{2}+8^{3} T\left(\frac{n}{2^{3}}\right)+8^{2}\left(\frac{n^{2}}{4^{2}}\right)\right) \\
& =n^{2}+2 n^{2}+2^{2} n^{2}+8^{3} T\left(\frac{n}{2^{3}}\right) \\
& =\cdots \\
& =n^{2}+2 n^{2}+2^{2} n^{2}+2^{3} n^{2}+2^{4} n^{2}+\ldots
\end{aligned}
$$

- Recursion depth: How long (how many iterations) it takes until the subproblem has constant size? i times where $\frac{n}{2^{i}}=1 \Rightarrow i=\log n$
- What is the last term? $8^{i} T(1)=8^{\log n}$

$$
\begin{aligned}
T(n) & =n^{2}+2 n^{2}+2^{2} n^{2}+2^{3} n^{2}+2^{4} n^{2}+\ldots+2^{\log n-1} n^{2}+8^{\log n} \\
& =\sum_{k=0}^{\log n-1} 2^{k} n^{2}+8^{\log n} \\
& =n^{2} \sum_{k=0}^{\log n-1} 2^{k}+\left(2^{3}\right)^{\log n}
\end{aligned}
$$

- Now $\sum_{k=0}^{\log n-1} 2^{k}$ is a geometric sum so we have $\sum_{k=0}^{\log n-1} 2^{k}=\Theta\left(2^{\log n-1}\right)=\Theta(n)$
- $\left(2^{3}\right)^{\log n}=\left(2^{\log n}\right)^{3}=n^{3}$

$$
\begin{aligned}
T(n) & =n^{2} \cdot \Theta(n)+n^{3} \\
& =\Theta\left(n^{3}\right)
\end{aligned}
$$

2.1 Recursion tree

A different way to look at the iteration method: is the recursion-tree, discussed in the book (4.2).

- we draw out the recursion tree with cost of single call in each node - running time is sum of costs in all nodes
- if you are careful drawing the recursion tree and summing up the costs, the recursion tree is a direct proof for the solution of the recurrence, just like iteration and substitution
- Example: $T(n)=8 T(n / 2)+n^{2} \quad(T(1)=1)$

3 Matrix Multiplication

- Let X and Y be $n \times n$ matrices

$$
X=\left\{\begin{array}{llll}
x_{11} & x_{12} & \cdots & x_{1 n} \\
x_{21} & x_{22} & \cdots & x_{1 n} \\
x_{31} & x_{32} & \cdots & x_{1 n} \\
\cdots & \cdots & \cdots & \cdots \\
x_{n 1} & x_{n 2} & \cdots & x_{n n}
\end{array}\right\}
$$

- We want to compute $Z=X \cdot Y$

$$
-z_{i j}=\sum_{k=1}^{n} X_{i k} \cdot Y_{k j}
$$

- Naive method uses $\Rightarrow n^{2} \cdot n=\Theta\left(n^{3}\right)$ operations
- Divide-and-conquer solution:

$$
Z=\left\{\begin{array}{ll}
A & B \\
C & D
\end{array}\right\} \cdot\left\{\begin{array}{ll}
E & F \\
G & H
\end{array}\right\}=\left\{\begin{array}{ll}
(A \cdot E+B \cdot G) & (A \cdot F+B \cdot H) \\
(C \cdot E+D \cdot G) & (C \cdot F+D \cdot H)
\end{array}\right\}
$$

- The above naturally leads to divide-and-conquer solution:
* Divide X and Y into 8 sub-matrices A, B, C, and D.
* Do 8 matrix multiplications recursively.
* Compute Z by combining results (doing 4 matrix additions).
- Lets assume $n=2^{c}$ for some constant c and let A, B, C and D be $n / 2 \times n / 2$ matrices
* Running time of algorithm is $T(n)=8 T(n / 2)+\Theta\left(n^{2}\right) \Rightarrow T(n)=\Theta\left(n^{3}\right)$
- But we already discussed a (simpler/naive) $O\left(n^{3}\right)$ algorithm! Can we do better?

3.1 Strassen's Algorithm

- Strassen observed the following:
$Z=\left\{\begin{array}{ll}A & B \\ C & D\end{array}\right\} \cdot\left\{\begin{array}{ll}E & F \\ G & H\end{array}\right\}=\left\{\begin{array}{cc}\left(S_{1}+S_{2}-S_{4}+S_{6}\right) & \left(S_{4}+S_{5}\right) \\ \left(S_{6}+S_{7}\right) & \left(S_{2}+S_{3}+S_{5}-S_{7}\right)\end{array}\right\}$
where

$$
\begin{aligned}
& S_{1}=(B-D) \cdot(G+H) \\
& S_{2}=(A+D) \cdot(E+H) \\
& S_{3}=(A-C) \cdot(E+F) \\
& S_{4}=(A+B) \cdot H \\
& S_{5}=A \cdot(F-H) \\
& S_{6}=D \cdot(G-E) \\
& S_{7}=(C+D) \cdot E
\end{aligned}
$$

- Lets test that $S_{6}+S_{7}$ is really $C \cdot E+D \cdot G$

$$
\begin{aligned}
S_{6}+S_{7} & =D \cdot(G-E)+(C+D) \cdot E \\
& =D G-D E+C E+D E \\
& =D G+C E
\end{aligned}
$$

- This leads to a divide-and-conquer algorithm with running time $T(n)=7 T(n / 2)+\Theta\left(n^{2}\right)$
- We only need to perform 7 multiplications recursively.
- Division/Combination can still be performed in $\Theta\left(n^{2}\right)$ time.
- Lets solve the recurrence using the iteration method

$$
\begin{aligned}
T(n) & =7 T(n / 2)+n^{2} \\
& =n^{2}+7\left(7 T\left(\frac{n}{2^{2}}\right)+\left(\frac{n}{2}\right)^{2}\right) \\
& =n^{2}+\left(\frac{7}{2^{2}}\right) n^{2}+7^{2} T\left(\frac{n}{2^{2}}\right) \\
& =n^{2}+\left(\frac{7}{2^{2}}\right) n^{2}+7^{2}\left(7 T\left(\frac{n}{2^{3}}\right)+\left(\frac{n}{2^{2}}\right)^{2}\right) \\
& =n^{2}+\left(\frac{7}{2^{2}}\right) n^{2}+\left(\frac{7}{2^{2}}\right)^{2} \cdot n^{2}+7^{3} T\left(\frac{n}{2^{3}}\right) \\
& =n^{2}+\left(\frac{7}{2^{2}}\right) n^{2}+\left(\frac{7}{2^{2}}\right)^{2} n^{2}+\left(\frac{7}{2^{2}}\right)^{3} n^{2} \ldots+\left(\frac{7}{2^{2}}\right)^{\log n-1} n^{2}+7^{\log n} \\
& =\sum_{i=0}^{\log n-1}\left(\frac{7}{2^{2}}\right)^{i} n^{2}+7^{\log n} \\
& =n^{2} \cdot \Theta\left(\left(\frac{7}{2^{2}}\right)^{\log n-1}\right)+7^{\log n} \\
& =n^{2} \cdot \Theta\left(\frac{7^{\log n}}{\left(2^{2}\right)^{\log n}}\right)+7^{\log n} \\
& =n^{2} \cdot \Theta\left(\frac{7^{\log n}}{n^{2}}\right)+7^{\log n} \\
& =\Theta\left(7^{\log n}\right)
\end{aligned}
$$

- Now we have the following:

$$
\begin{aligned}
7^{\log n} & =7^{\frac{\log _{7} n}{\log _{7} 2}} \\
& =\left(7^{\log _{7} n}\right)^{\left(1 / \log _{7} 2\right)} \\
& =n^{\left(1 / \log _{7} 2\right)} \\
& =n^{\frac{\log _{2} 7}{\log _{2} 2}} \\
& =n^{\log 7}
\end{aligned}
$$

- Or in general: $a^{\log _{k} n}=n^{\log _{k} a}$

So the solution is $T(n)=\Theta\left(n^{\log 7}\right)=\Theta\left(n^{2.81 \ldots}\right)$

- Note:
- We are 'hiding' a much bigger constant in $\Theta()$ than before.
- Currently best known bound is $O\left(n^{2.376 . .}\right)$ (another method).
- Lower bound is (trivially) $\Omega\left(n^{2}\right)$.

4 Master Method

- We have solved several recurrences using substitution and iteration.
- we solved several recurrences of the form $T(n)=a T(n / b)+n^{c} \quad(T(1)=1)$.
- Strassen's algorithm $\Rightarrow T(n)=7 T(n / 2)+n^{2}(a=7, b=2$, and $c=2)$
- Merge-sort $\Rightarrow T(n)=2 T(n / 2)+n(a=2, b=2$, and $c=1)$.
- It would be nice to have a general solution to the recurrence $T(n)=a T(n / b)+n^{c}$.
- We do!

$$
\begin{aligned}
& T(n)=a T\left(\frac{n}{b}\right)+n^{c} \quad a \geq 1, b \geq 1, c>0 \\
& \Downarrow \\
& T(n)= \begin{cases}\Theta\left(n^{\log _{b} a}\right) & a>b^{c} \\
\Theta\left(n^{c} \log _{b} n\right) & a=b^{c} \\
\Theta\left(n^{c}\right) & a<b^{c}\end{cases}
\end{aligned}
$$

Proof (Iteration method)

$$
\begin{aligned}
T(n) & =a T\left(\frac{n}{b}\right)+n^{c} \\
& =n^{c}+a\left(\left(\frac{n}{b}\right)^{c}+a T\left(\frac{n}{b^{2}}\right)\right) \\
& =n^{c}+\left(\frac{a}{b^{c}}\right) n^{c}+a^{2} T\left(\frac{n}{b^{2}}\right)^{c} \\
& =n^{c}+\left(\frac{a}{b^{c}}\right) n^{c}+a^{2}\left(\left(\frac{n}{b^{2}}\right)^{c}+a T\left(\frac{n}{b^{3}}\right)\right) \\
& =n^{c}+\left(\frac{a}{b^{c}}\right) n^{c}+\left(\frac{a}{b^{c}}\right)^{2} n^{c}+a^{3} T\left(\frac{n}{b^{3}}\right) \\
& =\ldots \\
& =n^{c}+\left(\frac{a}{b^{c}}\right) n^{c}+\left(\frac{a}{b^{c}}\right)^{2} n^{c}+\left(\frac{a}{b^{c}}\right)^{3} n^{c}+\left(\frac{a}{b^{c}}\right)^{4} n^{c}+\ldots+\left(\frac{a}{b^{c}}\right)^{\log _{b} n-1} n^{c}+a^{\log _{b} n} T(1) \\
& =n^{c} \sum_{k=0}^{\log _{b} n-1}\left(\frac{a}{b^{c}}\right)^{k}+a^{\log _{b} n} \\
& =n^{c} \sum_{k=0}^{\log _{b} n-1}\left(\frac{a}{b^{c}}\right)^{k}+n^{\log _{b} a}
\end{aligned}
$$

Recall geometric sum $\sum_{k=0}^{n} x^{k}=\frac{x^{n+1}-1}{x-1}=\Theta\left(x^{n}\right)$

- $a<b^{c}$
$a<b^{c} \Leftrightarrow \frac{a}{b^{c}}<1 \Rightarrow \sum_{k=0}^{\log _{b} n-1}\left(\frac{a}{b^{c}}\right)^{k} \leq \sum_{k=0}^{+\infty}\left(\frac{a}{b^{c}}\right)^{k}=\frac{1}{1-\left(\frac{a}{b^{c}}\right)}=\Theta(1)$
$a<b^{c} \Leftrightarrow \log _{b} a<\log _{b} b^{c}=c$

$$
\begin{aligned}
T(n) & =n^{c} \sum_{k=0}^{\log _{b} n-1}\left(\frac{a}{b^{c}}\right)^{k}+n^{\log _{b} a} \\
& =n^{c} \cdot \Theta(1)+n^{\log _{b} a} \\
& =\Theta\left(n^{c}\right)
\end{aligned}
$$

- $a=b^{c}$

$$
\begin{aligned}
a=b^{c} & \Leftrightarrow \frac{a}{b^{c}}=1 \Rightarrow \sum_{k=0}^{\log _{b} n-1}\left(\frac{a}{b^{c}}\right)^{k}=\sum_{k=0}^{\log _{b} n-1} 1=\Theta\left(\log _{b} n\right) \\
a=b^{c} & \Leftrightarrow \log _{b} a=\log _{b} b^{c}=c \\
T(n) & =\sum_{k=0}^{\log _{b} n-1}\left(\frac{a}{b^{c}}\right)^{k}+n^{\log _{b} a} \\
& =n^{c} \Theta\left(\log _{b} n\right)+n^{\log _{b} a} \\
& =\Theta\left(n^{c} \log _{b} n\right)
\end{aligned}
$$

- $a>b^{c}$
$a>b^{c} \Leftrightarrow \frac{a}{b^{c}}>1 \Rightarrow \sum_{k=0}^{\log _{b} n-1}\left(\frac{a}{b^{c}}\right)^{k}=\Theta\left(\left(\frac{a}{b^{c}}\right)^{\log _{b} n}\right)=\Theta\left(\frac{a^{\log _{b} n}}{\left(b^{c}\right)^{\log _{b} n}}\right)=\Theta\left(\frac{a^{\log _{b} n}}{n^{c}}\right)$
$T(n)=n^{c} \cdot \Theta\left(\frac{a^{\log _{b} n}}{n^{c}}\right)+n^{\log _{b} a}$
$=\Theta\left(n^{\log _{b} a}\right)+n^{\log _{b} a}$
$=\Theta\left(n^{\log _{b} a}\right)$
- Note: Book states and proves the result slightly differently (don't read it).

5 Changing variables

Sometimes reucurrences can be reduced to simpler ones by changing variables

- Example: Solve $T(n)=2 T(\sqrt{n})+\log n$

Let $m=\log n \Rightarrow 2^{m}=n \Rightarrow \sqrt{n}=2^{m / 2}$

$$
T(n)=2 T(\sqrt{n})+\log n \Rightarrow T\left(2^{m}\right)=2 T\left(2^{m / 2}\right)+m
$$

Let $S(m)=T\left(2^{m}\right)$

$$
\begin{aligned}
T\left(2^{m}\right)=2 T\left(2^{m / 2}\right)+m & \Rightarrow S(m)=2 S(m / 2)+m \\
& \Rightarrow S(m)=O(m \log m) \\
& \Rightarrow T(n)=T\left(2^{m}\right)=S(m)=O(m \log m)=O(\log n \log \log n)
\end{aligned}
$$

6 Other recurrences

Some important/typical bounds on recurrences not covered by master method:

- Logarithmic: $\Theta(\log n)$
- Recurrence: $T(n)=1+T(n / 2)$
- Typical example: Recurse on half the input (and throw half away)
- Variations: $T(n)=1+T(99 n / 100)$
- Linear: $\Theta(N)$
- Recurrence: $T(n)=1+T(n-1)$
- Typical example: Single loop
- Variations: $T(n)=1+2 T(n / 2), T(n)=n+T(n / 2), T(n)=T(n / 5)+T(7 n / 10+6)+n$
- Quadratic: $\Theta\left(n^{2}\right)$
- Recurrence: $T(n)=n+T(n-1)$
- Typical example: Nested loops
- Exponential: $\Theta\left(2^{n}\right)$
- Recurrence: $T(n)=2 T(n-1)$

