# Heaps. Heapsort.

(CLRS 6)

### 1 Introduction

- We have discussed several fundamental algorithms (e.g. sorting)
- We will now turn to data structures; Play an important role in algorithms design.
  - Today we discuss priority queues and next time structures for maintaining ordered sets.

# 2 Priority Queue

- A priority queue supports the following operations on a set S of n elements:
  - Insert a new element e in S
  - FINDMIN: Return the minimal element in S
  - Deletement in S
- Sometimes we are also interested in supporting the following operations:
  - Change: Change the key (priority) of an element in S
  - Delete: Delete an element from S
- We can obviously sort using a priority queue:
  - Insert all elements using Insert
  - Delete all elements in order using FINDMIN and DELETEMIN
- Priority queues have many applications, e.g. in discrete event simulation, graph algorithms

#### 2.1 Array or List implementations

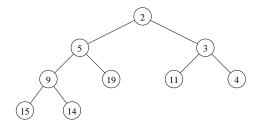
• The first implementation that comes to mind is ordered array:



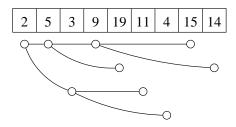
- FINDMIN can be performed in O(1) time
- DELETEMIN and INSERT takes O(n) time since we need to expand/compress the array after inserting or deleting element.
- If the array is unordered all operations take O(n) time.
- We could use double linked sorted list instead of array to avoid the O(n) expansion/compression cost
  - but Insert can still take O(n) time.

## 2.2 Heap implementation

- One way of implementing a priority queue is using a heap
- Heap definition:
  - Perfectly balanced binary tree
    - \* lowest level can be incomplete (but filled from left-to-right)
  - For all nodes v we have  $key(v) \ge key(parent(v))$
- Example:

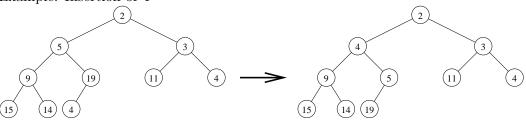


- Heap can be implemented (stored) in two ways (at least)
  - Using pointers
  - In an array level-by-level, left-to-right Example:



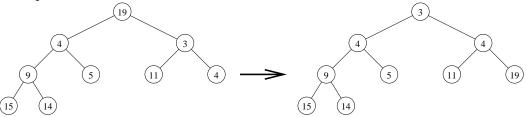
- \* the left and right children of node in entry i are in entry 2i and 2i + 1, respectively
- \* the parent of node in entry i is in entry  $\lfloor \frac{i}{2} \rfloor$
- Properties of heap:
  - Height  $\Theta(\log n)$
  - Minimum of S is stored in root
- Operations:
  - Insert
    - \* Insert element in new leaf in leftmost possible position on lowest level
    - \* Repeatedly swap element with element in parent node until heap order is reestablished (UP-HEAPIFY)

Example: Insertion of 4



- FINDMIN
  - \* Return root element
- Deletemin
  - \* Delete element in root
  - \* Move element from rightmost leaf on lowest level to the root (and delete leaf)
  - \* Repeatedly swap element with the smaller of the children elements until heap order is reestablished (DOWN-HEAPIFY)

Example:



- Change and Delete can be handled similarly in  $O(\log n)$  time
  - \* Note: Assuming that we know the element to be changed/deleted (we cannot search in a heap!!)
- Correctness: Exercise.
- Running time: All operations traverse at most one root-leaf path  $\Rightarrow O(\log n)$  time.
- Sorting using heap (HeapSort) takes  $\Theta(n \log n)$  time.
  - $-n \cdot O(\log n)$  time to insert all elements (build the heap)
  - $-n \cdot O(\log n)$  time to output sorted elements
- Sometimes we would like to build a heap faster than  $O(n \log n)$ 
  - BUILDHEAP
    - \* Insert elements in any order in perfectly balanced tree
    - \* DOWN-HEAPIFY all nodes level-by-level, bottom-up
  - Correctness:
    - \* Induction on height of tree: When doing level i, all trees rooted at level i-1 are heaps.
  - Analysis:
    - \* The leaves are at height 0, the root is at height  $\log n$
    - \* n elements  $\Rightarrow \leq \lceil \frac{n}{2} \rceil$  leaves  $\Rightarrow \lceil \frac{n}{2^h} \rceil$  elements at height h
    - \* Cost of DOWN-HEAPIFY on a node at height h is h
    - \* Total cost:  $\sum_{i=1}^{\log n} h \cdot \lceil \frac{n}{2^h} \rceil = \Theta(n) \cdot \sum_{i=1}^{\log n} \frac{h}{2^h}$

- \* It can be shown that  $\sum_{i=1}^{\log n} \frac{h}{2^h} = O(1) \Longrightarrow$  the total buildheap cost is  $\Theta(n)$
- \* Computing  $\sum_{i=1}^{n} \frac{h}{2^{h}}$  and  $\sum_{i=1}^{\infty} \frac{h}{2^{h}}$ · Differentiate  $\sum_{h=0}^{n} x^{h} = \frac{1-x^{n+1}}{1-x}$ , respectively  $\sum_{h=0}^{\infty} x^{h} = \frac{1}{1-x}$  (assuming |x| < 1) ·  $\sum_{h=0}^{\infty} hx^{h-1} = \frac{1}{(x-1)^{2}} \Rightarrow \sum_{h=0}^{n} hx^{h} = \frac{x}{(x-1)^{2}} \Rightarrow \sum_{h=0}^{n} \frac{h}{2^{h}} = \frac{1/2}{(1/2-1)^{2}} = O(1)$