
Binary Search Trees and Skip Lists.
(CLRS 10, 12.1-12.3)

1 Maintaining ordered set dynamically

• We want to maintain an ordered set S under operations

– Search(e): Return (pointer to) element e in S (if e ∈ S)

– Insert(e): Insert element e in S

– Delete(e): Delete element e from S

– Successor(e): Return (pointer to) minimal element in S larger than e

– Predecessor(e): Return (pointer to) maximal element in S smaller than e

1.1 Ordered array implementation

• The first implementation that comes to mind is the ordered array:

1 3 5 6 7 8 9 11 12 15 17

– Search can be performed in O(n) time by scanning through array or in O(log n) time
using binary search

– Predecessor/Successor can be performed in O(log n) time like searching

– Insert/Delete takes O(n) time since we need to expand/compress the array after
finding the position of e

1.2 Double linked list implementation

• Unordered list

17 15 11 127683519

– Search takes O(n) time since we have to scan the list

– Predecessor/Successor takes O(n) time

– Insert takes O(1) time since we can just insert e at beginning of list

– Delete takes O(n) time since we have to perform a search before spending O(1) time
on deletion

• Ordered list

12 171511976531 8

– Search takes O(n) time since we cannot perform binary search

1

– Predecessor/Successor takes O(n) time

– Insert/Delete takes O(n) time since we have to perform a search to locate the position
of insertion/deletion

1.3 Binary search tree implementation

• Binary search naturally leads to definition of binary search tree

8

12

17

1596

3 117

1

5

• Formal definition of search tree:

– Binary tree with elements in nodes

– If node v holds element e then

∗ All elements in left subtree < e

∗ All elements in right subtree > e

> e< e

e

– Search(e) in O(height): Compare with e and recursively search in left or right subtree

– Insert(e) in O(height): Search for e and insert at place where search path terminates
(Note: height may increase)

Example: Insertion of 13

2

8

12

17

1596

3 117

1

5

13

– Delete(e) in O(height): Search for node v containing e,

1. v is a leaf: Delete v

2. v is internal node with one child: Delete v and attach child(v) to parent(v)

Example: Delete 7

8

12

17

159

3 11

1

5

13

6

3. v is internal node with two children:

∗ exchange e in v with successor e′ in node v′ (minimal element in right subtree,
found by following left branches as long as possible in right subtree)

∗ v′ node can be deleted by case 1 or 2

Example: Delete 12

8

17

159

3 11

1

5

6

13

• Note:

– Running time of all operations depend on height of tree.

– Intuitively the tree will be nicely balanced if we do insertion and deletion randomly.

– In worst case the height can be O(n).

3

2 Skip lists

• There are several schemes for keeping search trees reasonably balanced and obtain O(log n)
bounds

– Often quite complicated—We will discuss one way (red-black trees) later.

• When we discussed Quick-sort we saw how randomization can lead to good expected running
times.

– We will now discuss how randomization can be used to obtain a very simple search
structure with expected case performance O(log n) (independent of data/operations!)

• Idea in a skip list is best illustrated if we try to build a “search tree” on top of double linked
list:

– Insert elements −∞ and ∞

– Repeatedly construct double linked list (level Si) on top of current list (level Si−1) by
choosing every second element (and link equal elements together)

⇓

– Number of levels is O(log n)

3 6 8 9 1171

1

1

1

5

5

7

7

9

1

12

12

12 15 17

17

12

S

S

S

S

S

S

0

1

2

3

4

5

– Search(e): Start at topmost left element. Repeatedly drop down one level and search
forward until max element ≤ e is found.

Example: Search for 8

3 6 8 9 1171

1

1

1

5

5

7

7

9

1

12

12

12 15 17

17

12

S

S

S

S

S

S

0

1

2

3

4

5

O(log n) time since we move at most one step to the right at each level.

– Predecessor/Successor also in O(log n) time

4

– Insert/Delete seems hard to do in better than O(n) time since we might need to rebuild
the entire structure after one of the operations.

• Idea in skip list is to let level Si consist of a randomly generated subset of elements at level
Si−1.

– To decide if an element on level Si−1 should be on level Si, we flip a coin and include
the element if it is head.
⇓

Expected size of S1 is n

2

Expected size of S2 is n

4
...
Expected size of Si is n

2i

⇓

Expected height is O(log n)

• Operations:

– Search(e) as before.

– Delete(e): Search to find e and delete all occurrences of e.

– Insert(e):

∗ search to find position of e in S0

∗ Insert e in S0.

∗ Repeatedly flip a coin; insert e and continue to next level if it comes up head.

• Running time of all the operations is bounded by search running time

– Down search takes O(height) = O(log n) expected.

– Right search/scan:

∗ If we scan an element on level i it cannot be on level i + 1 (because then we would
have scanned it there)
⇓

∗ Expected number of elements we scan on level i is the expected number of times we
have to flip a coin to get head
⇓

∗ We expect to scan 2 elements on level i
⇓

∗ Running time is O(height) = O(log n) expected.

• Note:

– We only really need forward and down pointers.

– Expected space use is
∑log n

i=0
n

2i ≤ n ·
∑

∞

i=0
1
2i = O(n).

5

