
Lecture 1: Introduction
(CLRS 1+2.1-2.2)

1 Introduction

• Class is about designing and analyzing algorithms

– Algorithm: A well-defined procedure that takes an input and computes some output.

∗ Not a program (but often specified like it): An algorithm can often be implemented
in several ways.

– Design: Methods/ideas for developing (efficient) algorithms.

– Analysis: Abstract/mathematical comparison of algorithms (without actually imple-
menting them). Think of analysis as a measure of the quality of your algorithm and use
it to justify design decisions when you write programs.

• In this class we do all these:

– come up with solutions for a problem

– prove that it is correct

– analyze its running time

• Hopefully the class will show that algorithms matter!

2 Algorithm example: Insertion-sort

The problem of sorting is defined as:

• Input: n integers in array A[1..n]

• Output: A sorted in increasing order

Insertion-sort works similarly with sorting a deck of cards. The algorithm is described below in
a (Pascal like) pseudo-code that we will use to describe algorithms.

INSERTION-SORT(A)

For j = 2 to n DO
key = A[j]
i = j − 1
WHILE i > 0 and A[i] > key DO

A[i + 1] = A[i]
i = i − 1

OD
A[i + 1] = key

OD

1

How does it work? Example:

j=6 i=5

i=4

i=3

1 2 4 5 6 3

1 2 4 5 6 6

1 2 4 5 5 6

1 2 4 4 5 6

1 2 3 4 5 6

i=2

6 1 3 j=5 i=4

i=3

i=2

i=1

i=0

2 4 5

2 4 5

6 6 3

2 4 5 5 6 3

2 4 4 5 6 3

2 2 4 5 6 3

1 2 4 5 6 3

key=1

key=3

i=12 5 5 6 1 3

2 4 5 6 1 3

2 5 4 6 1 3 j=3 i=2

5 2 4 6 1 3

5 5 4 6 1 3

j=2 i=1

i=0

2 5 4 6 1 3

key=2

key=4

2 4 5 6 1 3

2 4 5 6 1 3 j=4 i=3 key=6

2.1 Correctness

We prove correctness by finding and proving certain conditions that hold at some point in the
algorithm for any input. These are called invariants.

• Prove the following loop invariant: “A[1..j-1] is sorted” holds at the beginning of each iteration
of FOR-loop.

– When j=n+1 (Termination) we have the correct output.

• The loop invariant can be proved by induction (try it!).

• Note: In many cases it is harder to find the right invariant(s) than to prove it (them).

2.2 Analysis

• We want to predict the resource use of the algorithm.

• We can be interested in different resources (like main memory, bandwidth), but normally
running time.

2

• To analyze running time without actually implementing the algorithm we need a mathematical
model of a computer:

Random-access machine (RAM) model:

– Instructions executed sequentially one at a time

– All instructions take unit time:

∗ Load/Store
∗ Arithmetics (e.g. +,−, ∗, /)
∗ Logic (e.g. >)

– Main memory is infinite

• The running time of an algorithm is the number of instructions it executes in the
RAM model of computation.

• RAM model not completely realistic, e.g.

– main memory not infinite (even though we often imagine it is when we program)

– not all memory accesses take same time (cache, main memory, disk)

– not all arithmetic operations take same time (e.g. multiplications expensive)

– instruction pipelining

– other processes

• But RAM model often enough to give relatively realistic results (if we don’t cheat too much).

• Running time of insertion-sort depends on many things

– How sorted the input is

– How big the input is

– ...

• Normally we are interested in running time as a function of input size

– in insertion-sort: n.

• Best-case running time: The shortest running time for any input of size n.The algorithm
will never be faster than this.

• Worst-case running time: The longest running time for any input of size n. The algorithm
will never be slower than this.

• Average-case running time: Be careful: average over what? Must assume an input
distribution.

• Let us analyze insertion-sort by assuming that line i in the program use c RAM instructions.

– How many times are each line of the program executed?

– Let tj be the number of times line 4 (the WHILE statement) is executed in the j’th
iteration.

3

cost times
FOR j = 2 to n DO c n

key = A[j] c n − 1
i = j − 1 c n − 1
WHILE i > 0 and A[i] > key DO c

∑n
j=2 tj

A[i + 1] = A[i] c
∑n

j=2(tj − 1)
i = i − 1 c

∑n
j=2(tj − 1)

OD
A[i + 1] = key c n − 1

OD

• Running time: (depends on tj) T (n) = cn + 2c(n− 1)+ c
∑n

j=2 tj + 2c
∑n

j=2(tj − 1)+ c(n− 1)

– Best case: tj = 1 (already sorted)
T (n) = cn + 2c(n − 1) + c(n − 1) + c(n − 1)

= 5cn − 4c
= k1n − k2

Linear function of n

– Worst case: tj = j (sorted in decreasing order)
T (n) = cn + 2c(n − 1) + c

∑n
j=2 j + 2c

∑n
j=2(j − 1) + c(n − 1)

= cn + 2c(n − 1) + c(n(n+1)
2 − 1) + 2c((n−1)n

2) + c(n − 1)
= ...
= k3n

2 + k4n − k5

Quadratic function of n

Note: We used
∑n

j=1 j = n(n+1)
2 (Next week!)

– Average case: We assume n numbers chosen randomly ⇒ tj = j/2
T (n) = k6n

2 + k7n + k8

Still Quadratic function of n

• Note:

– We will normally be interested in worst-case running time.

∗ For some algorithms, worst-case occur fairly often.
∗ Average case often as bad as worst case (but not always!).

– We will only consider order of growth of running time:

∗ We already ignored cost of each statement and used the constants c.
∗ We even ignored c and used ki.
∗ We simply said that best case was linear in n and worst/average case quadratic in

n.

⇒ O-notation (best case O(n), worst/average case O(n2)) (next lecture!)

4

